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Functional Domains of the LIM Homeodomain
Protein Xlim-1 Involved in Negative Regulation,
Transactivation, and Axis Formation
in Xenopus Embryos
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The Xenopus LIM homeodomain protein Xlim-1 is specifically expressed in the Spemann organizer region and assumed to
lay a role in the establishment of the body axis as a transcriptional activator. To further elucidate the mechanism
nderlying the regulation of its transcriptional activity, we focused on the region C-terminal to the homeodomain of Xlim-1

CT239-403) and divided it into five regions, CCR1–5 (C-terminal conserved regions), based on similarity between Xlim-1
nd its paralog, Xlim-5. The role of Xlim-1 CT239-403 in the Spemann organizer was analyzed by assaying the axis-forming
bility of a series of CCR-mutated constructs in Xenopus embryos. We show that high doses of Xlim-1 constructs deleted
f CCR1 or CCR2 initiate secondary axis formation in the absence of its coactivator Ldb1 (LIM-domain-binding protein 1),
uggesting that CCR1 and CCR2 are involved in negative regulation of Xlim-1. In contrast, while Xlim-1 is capable of
nitiating secondary axis formation at low doses in the presence of Ldb1, deletion of CCR2 (aa 275–295) or substitution of
ve conserved tyrosines in CCR2 with alanines (CCR2-5YA) abolished the activity. In addition, UAS-GAL4 one-hybrid
eporter assays in Xenopus showed that CCR2, but not CCR2-5YA, with its flanking regions (aa 261–315) functions as a
ransactivation domain when fused to the GAL4 DNA-binding domain. Finally, we show that none of the known
ranscriptional coactivators tested (CBP, SRC-1, and TIF2) interacts with the Xlim-1 transactivation domain (aa 261–315).
hus, Xlim-1 not only contains a unique tyrosine-rich activation domain but also contains a negative regulatory domain in
T239-403, suggesting a complex regulatory mechanism underlying the transcriptional activity of Xlim-1 in the
rganizer. © 2000 Academic Press

Key Words: Xenopus laevis; Spemann organizer; axis formation; transcription factor; LIM homeodomain protein; LIM
domain; negative regulation; transactivation; Xlim-1; Ldb1.
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INTRODUCTION

Specific induction of gene expression by transcription
factors is a key event in all developmental processes.
Transcription factors are generally composed of multiple
functional domains for DNA binding, transactivation or
repression, and regulation via protein–protein interactions
(Mitchell and Tjian, 1989; Ptashne, 1988). As the specificity

1 To whom correspondence should be addressed at the Depart-
ment of Biological Sciences, Graduate School of Science, Univer-
sity of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
1Fax: (81) 3-5841-4434. E-mail: m_taira@biol.s.u-tokyo.ac.jp.
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f target gene selection is mainly determined by the DNA-
inding properties of the DNA-binding domain, combina-
orial binding of various transcription factors to regulatory
equences is thought to define temporally and spatially
egulated gene expression during embryogenesis (Ptashne
nd Gann, 1998). In addition, protein–protein interactions
etween transcription factors directly or through adaptor
roteins appear to be important for regulating their target
enes as has been exemplified in the case of Hox proteins
nd their cofactors (Mann and Affolter, 1998) or LIM home-
domain (LIM-HD) proteins and Ldb1, LIM-domain-binding
rotein 1 (also known as NLI and CLIM2) (Dawid et al.,

998).
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457Functional Domain Analysis of Xlim-1 in Xenopus
The LIM-HD proteins comprise a subfamily of the home-
odomain protein family of transcription factors and are
further classified into six highly conserved subclasses ac-
cording to sequence similarities of their homeodomains
(Dawid et al., 1995, 1998). In addition to the DNA-binding
homeodomain, the LIM-HD proteins have two highly con-
served LIM domains in their N-terminus, which are in-
volved in protein–protein interactions (Agulnick et al.,
1996; Bach et al., 1997; Jurata et al., 1996). They have been
mplicated in a variety of developmental processes such as
ody axis determination, regional specification, and tissue-
r cell-type specification (Curtiss and Heilig, 1998; Dawid
t al., 1998).
The Xenopus Xlim-1 is a member of the LIM-HD family

pecifically expressed in the Spemann organizer region
Taira et al., 1992) and assumed to play important roles in
he vertebrate organizer function (Shawlot and Behringer,
995; Taira et al., 1994). As reported previously, Xlim-1 is
nactive when ectopically expressed in Xenopus embryos,
hereas mutations in the LIM domains impart axis-

orming ability to Xlim-1 by relieving the inhibitory effect
f the LIM domains (Taira et al., 1994). Ldb1 is also capable
f suppressing the inhibitory effect by binding to the LIM
omains of Xlim-1 (Agulnick et al., 1996). Recently, we

have shown that Xlim-1 and Ldb1 form a complex on the
goosecoid promoter and activate the expression of the
goosecoid gene (Mochizuki et al., 2000). By analogy to the
case of the Drosophila LIM-HD member Apterous and the
Ldb1 ortholog, Chip, Xlim-1 and Ldb1 are thought to form
a tetrameric complex to function as a transcriptional acti-
vator (Breen et al., 1998; Jurata et al., 1998; Milan and
Cohen, 1999; van Meyel et al., 1999).

Compared to analyses of the LIM domains, the region
C-terminal to the homeodomain of Xlim-1 (referred to as
CT239-403) has not been fully studied, even though its
amino acid sequence is highly conserved among orthologs
of Lim1/Lhx1, as is also the case with orthologs of Lim3/
Lhx3 (Zhadanov et al., 1995) and Isl-1 (Tokumoto et al.,
1995). In many cases, transcriptional activators possess
canonical transactivation domains containing proline-rich,
glutamine-rich, or acidic amino acid sequences, which are
not well conserved at primary sequence levels. In contrast,
Xlim-1 is 90% identical to mouse Lim1 in the C-terminal
region, which shows transactivation activity in a yeast
one-hybrid system (Breen et al., 1998). This high degree of
mino acid sequence conservation in the C-terminal region
uggests the existence of multiple functional domains, each
f which might interact with other nuclear proteins includ-
ng coactivators, corepressors, or other transcription factors
hat modulate the activity of Xlim-1. Therefore, to further
lucidate the molecular mechanism by which Xlim-1 regu-
ates its target genes in the Spemann organizer, we exam-
ned the role of specific domains in the C-terminal region
y analyzing the activities of a series of C-terminal mutated
onstructs as assayed by axis duplication experiments. The

esults indicate the existence of both a negative regulatory

Copyright © 2000 by Academic Press. All right
omain and two activation domains, implying the exis-
ence of multiple transcriptional cofactors of Xlim-1.

MATERIALS AND METHODS

Embryo Manipulations, RNA Injections, and
Whole-Mount Immunostaining

Xenopus embryos were fertilized in vitro, dejellied, and incu-
ated in 0.13 Steinberg’s solution (Peng, 1991). Embryonic stages
ere determined according to Nieuwkoop and Faber (1967). RNA

2.5–10 nl/embryo) or DNA/RNA (10 nl/embryo) injections into
mbryos were done in 3% Ficoll in 13 MBS (Peng, 1991). Injected
mbryos were kept in 3% Ficoll in 13 MBS for 2–3 h, transferred to
.13 Steinberg’s solution, 50 mg/ml gentamicin sulfate, and incu-
ated until embryos reached the appropriate stages. For axis dupli-
ation assays, mRNAs were injected into the equatorial region of
wo ventral blastomeres at the four-cell stage and scored for axis
evelopment at tail-bud stages (stages 32–37/38). For Xenopus
ne-hybrid assays, mRNA and reporter DNA were co-injected into
oth blastomeres at the two-cell stage in the animal pole region.
nimal caps were dissected as similarly in size as possible at stage
–9, cultured until the equivalent of stage 11, and collected for

uciferase assays (Mochizuki et al., 2000). For whole-mount immu-
ostaining, mRNA-injected embryos were fixed at tail-bud stages
ith MEMFA and stained as described (Hemmati-Brivanlou and
arland, 1989) using the muscle-specific 12/101 antibody (Kintner

nd Brockes, 1984).

Plasmid Constructs

pCS21Xlim-1 was constructed with the Xlim-1 coding region
flanked by a NcoI site at the 59 end and an EcoRI site at the 39 end
(TAGCAAGCTTGAATTC, in which the boldface and underline
indicate the stop codon and restriction site, respectively) in
pCS21AdN (Mochizuki et al., 2000), a derivative of pCS21 (Rupp et
l., 1994). PCR amplification and subsequent subcloning into appro-
riate restriction sites were performed to create the following con-
tructs. ApaI (Xlim-1)/EcoRI (vector) sites of pCS21Xlim-1 were

used to make pCS21Xlim-1(1-397), pCS21Xlim-1(1-353), and
pCS21Xlim-1(1-315), in which the last codon was followed by a
termination codon and EcoRI site (TAGTCTTCGAATTC).
pCS21Xlim-1(1-272) was generated by removing the ApaI (Xlim-1)/
XbaI (vector) fragment of pCS21Xlim-1 followed by Klenow reaction
and self-ligation. However, unexpected incomplete blunt-ending of
the ApaI site by Klenow reaction resulted in the addition of nine
unrelated amino acids, ARTIVSRIT, derived from the vector se-
quence. To fuse various portions of CT239-403 to the homeodomain
(aa 178–238), pCS21Xlim-1(1-240) was made, in which an EcoRI site
was introduced just after the codon of aa 240, followed by a termina-
tion codon and XbaI site (GAATTCTAGTCTAGA). This construct
contains two additional amino acids, EF, corresponding to the EcoRI
ite after aa 240. The EcoRI/XbaI sites of pCS21Xlim-1(1-240) were

used to make pCS21Xlim-1(1-240/261-315), pCS21Xlim-1(1-240/
273-305), and pCS21Xlim-1(1-240/287-293). To make Ldb1/Xlim-1
fusion constructs, the BamHI/EcoRI sites of pCS21 were used to
make pCS21Ldb1(1-291), in which ClaI and AseI sites and a stop
codon overlapping the EcoRI site were introduced after aa 291 (ATC-
GATATTAATTGAATTC). ClaI/EcoRI sites of pCS21Ldb1(1-291)
were used to make pCS21Ldb-Xlim1, pCS21Ldb-Xlim1(D241-260),

pCS21Ldb-Xlim1(D278-292), and pCS21Ldb-Xlim1(D278-303) by in-

s of reproduction in any form reserved.
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458 Hiratani et al.
serting ClaI (Xlim-1)/EcoRI (vector) fragments of pCS21Xlim1 and its
mutant constructs. These Ldb-Xlim1 fusion constructs lack most
of the LIM domains upstream of aa 107 corresponding to the
ClaI site. pSP64-Xbm-Xlim-1(D241-260), pCS21Xlim-1(D278-292),
pCS21Xlim-1(D278-303), pCS21Xlim-1(5YF), pCS21Xlim-1(5YA),
pCS21Ldb-Xlim1(5YF), and pCS21Ldb-Xlim1(5YA) were made by
site-directed mutagenesis using the Gene Editor in vitro site-directed
mutagenesis system (Promega) according to the manufacturer’s rec-
ommendations. All five tyrosine residues were changed to phenylal-
anine (5YF) or alanine (5YA) by replacing TAT with TTT or GCT,
respectively.

BamHI (blunt-ended)/XhoI sites of pCS21 were used to make
pCS21DBD with GAL4-DBD (aa 1–147) plus multiple cloning sites
(NdeI through BamHI) from pAS2-1 (Clontech). EcoRI/XbaI sites of
pCS21DBD were then used to make pCS21DBD-CT261-403,
pCS21DBD-CT293-403, pCS21DBD-CT316-403, pCS21DBD-
CT261-315, and pCS21DBD-CT261-315(5YA). NcoI (blunt-ended)/
EcoRI sites of pCS21DBD were used for making pCS21DBD-AD
with GAL4AD (aa 768–881) and an HA epitope tag from pACT2
(Clontech). NcoI/EcoRI sites of pCS21DBD were used to make
pCS21DBD-CT239-403 with the NcoI/EcoRI fragment of pAS2-1-
DBD-CT239 (Breen et al., 1998), a region encoding aa 239–403 of
Xlim-1. To make pCS21DBD-CT239(D278-292), the ApaI (Xlim-
1)/ApaI (vector) fragment of pCS21DBD-CT239 was replaced with
that of pCS21Ldb-Xlim1(D278-292).

pGEX2T-CT261-315 and pGEX2T-CT261-315(5YA) for gluta-
thione S-transferase (GST) fusion proteins were constructed by
inserting the same EcoRI/XbaI fragments as used in the
pCS21DBD construct into EcoRI/XbaI sites of a modified version
of pGEX2T (pGEX2T-NEX), which contains BamHI, NcoI, ClaI,
EcoRI, and XbaI sites upstream of the stop codon. pGEX3X was
used to generate the GST protein. All plasmids constructed in this
study were verified by sequencing. The following plasmids have
been described: pSP64-Xbm-Xlim-1 (Taira et al., 1994), pSP64-Xbm
Xenopus b-globin) (Krieg and Melton, 1984), pSP64RI-XLdb1
(Agulnick et al., 1996), pGEX2T-Smad3 (Sano et al., 1999),
pcDNA3-mCBP-HA (Sano et al., 1998), pGEX4T1-hERa(DEF) (En-
oh et al., 1999), and pcDNA3-hSRC-1 and pcDNA3-hTIF2 (Koba-

yashi et al., 2000).

Preparation of Synthetic mRNAs

For template preparations, pCS21 and pSP64 plasmid constructs
were linearized with NotI and SalI, respectively. Capped mRNAs
were synthesized in vitro using the MEGAscript SP6 kit (Ambion)
with m7-GpppG (New England Biolabs) and dissolved in RNase-
free water. The quantities of synthesized mRNAs were determined
by comparison with RNA of known concentration on a 1%
agarose/formaldehyde gel. mRNA derived from the pCS21 vector
was used for virtually all constructs in order to expect similar
efficiency of protein expression. Exceptional use of pSP64 vector for
Xlim-1(D241-260) is indicated in the figure legends.

Luciferase Reporter Assay

pUAS-Ars194-Luc reporter plasmid (Kiyama et al., 1998) was
used for the Xenopus one-hybrid assay. Luciferase assays were
erformed using a luciferase assay system (Promega) according to
he manufacturer’s protocols at half scale as described (Mochizuki
t al., 2000). Cell extracts were prepared from five independent
ools each containing three animal caps, and luciferase activity

as measured using a Lumat LB 9507 luminometer (Berthold). p

Copyright © 2000 by Academic Press. All right
Means and standard errors (SE) of five independent values were
calculated after subtraction of the luciferase activity of uninjected
control as background. Relatively small SE (see Fig. 6B) verified
reliable assays without internal controls for luciferase activity.

GST Pull-Down Assay

GST fusion proteins or GST alone were expressed in Escherichia
oli (DH5a or BL21(DE)) essentially as described (Mochizuki et al.,

2000). Expression of proteins with the predicted size was monitored
by SDS–PAGE. [35S]Methionine-labeled CBP, SRC-1, and TIF2 were
enerated by using the TNT T7 coupled reticulocyte lysate system
Promega). Approximately 10 mg of GST fusion proteins or GST
alone bound to GST beads and 10 ml of in vitro-translated products
were mixed in 300 ml of NETN1 buffer (50 mM Tris–Cl, pH 7.5,
150 mM NaCl, 5 mM EDTA, 0.5% Nonidet P-40), incubated on ice
for 30 min, washed with NETN1 buffer five times, and subjected
to SDS–PAGE and analyzed by BAS-2000 (Fuji Film). For GST-
ERa(DEF), binding assays were done in the presence of 1026 M
17b-estradiol.

RESULTS

Division of the C-terminal Region of Xlim-1
into Five Portions Referred to as CCRs
(C-terminal Conserved Regions)

In comparison within the Lim1/Lhx1 subclass, Xlim-1 is
highly conserved across the entire region sharing 92%
identity with the mouse ortholog Lim1 (Barnes et al., 1994;
Fujii et al., 1994) and 72% with its Xenopus paralog, Xlim-5
(Toyama et al., 1995). To analyze the role of the region
C-terminal to the homeodomain of Xlim-1 (CT239-403), we
divided it into five regions, CCR1 through CCR5, according
to sequence similarity between Xlim-1 and Xlim-5 (Fig. 1).
CCR1 (aa 239–260) is the most conserved region within
CT239-403. CCR2 (aa 275–295) is also a well-conserved
region rich in phenylalanine and tyrosine. Five tyrosine
residues in CCR2 are perfectly conserved within the verte-
brate Lim1/Lhx1 subclass (Fig. 1). CCR3 (aa 298–350) and
CCR4 (aa 353–395) are relatively less conserved regions rich
in serine and proline. CCR5 (aa 396–403) is a short stretch
of sequence in the most C-terminal region, which is well
conserved among vertebrates, sea urchin, and Drosophila
members of the Lim1/Lhx1 subclass (Kawasaki et al., 1999;
Lilly et al., 1999; Tsuji et al., 2000).

CCR1 and CCR2 Are Negative Regulatory Regions

To analyze the role of CT239-403 of Xlim-1 in Spe-
mann organizer function, we adopted the axis duplication
assay by mRNA injection into the ventral equatorial
region of the Xenopus embryo. As described previously,
active forms of Xlim-1, in which the LIM domains are
point mutated (Xlim-1/3m) or deleted (Xlim-1/DNA)
(Taira et al., 1994), or wild-type Xlim-1 coexpressed with

db1 (Agulnick et al., 1996) gives rise to two typical

henotypes, “secondary axis” and “dorsalized,” as shown

s of reproduction in any form reserved.
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459Functional Domain Analysis of Xlim-1 in Xenopus
in Fig. 2 (upper row). Immunostaining by a muscle-
specific antibody, 12/101, verified ectopic muscle forma-
tion in embryos with secondary axis and in dorsalized
embryos (Fig. 2, lower row). Thus, categorizing the phe-
notypic effects by morphological appearances as shown
in Fig. 2 was used to evaluate the organizer activity of
various Xlim-1 constructs as described below.

We first focused on the well-conserved CCR1 and CCR2
and examined their roles by using internal deletion con-
structs. We found that deletion of CCR1, surprisingly,
imparted axis-forming ability to Xlim-1 in the absence of

FIG. 1. Sequence alignment of CCR1–5 (C-terminal conserved re
dashes, spaces for alignment; boxes, CCR1 through CCR5; asterisks
diagram of Xlim-1. Percentages of amino acid sequence identity bet
are 72% identical overall, 56% identical within the entire C-term

FIG. 2. Phenotypes of mRNA-injected embryos in axis duplication
aterials and Methods. Typical morphological appearances elici

mbryos with secondary axes and ectopic muscle formation (arro
ormation (arrowheads) on the ventral side; normal, normal by vi

ormation was shown by immunostaining using the muscle-specific 12

Copyright © 2000 by Academic Press. All right
db1 (Fig. 3, D241-260). CCR2 deletion constructs, D278-
92 or D278-303, also gave the same result, but to a lesser

extent (Fig. 3). These results suggest that, in addition to the
LIM domains, CCR1 and CCR2 are also involved in nega-
tive regulation of Xlim-1. However, it should be noted that
higher doses (1 ng mRNA/embryo) were required for CCR1/
CCR2 deletion mutants compared to the LIM domain-
mutated active forms of Xlim-1, Xlim-1/3m, and Xlim-1/
DNA (0.25 ng mRNA/embryo, data not shown), implying
smaller contributions of CCR1 and CCR2 to the negative
regulation.

s) of Xlim-1 and its paralog, Xlim-5. Dots, identical amino acids;
conserved tyrosine residues in CCR2. Shown below is a schematic
each region compared to Xlim-5 are indicated. Xlim-1 and Xlim-5

egion. A, B, LIM domains A and B; HD, homeodomain.

ys. Xenopus embryos were injected with mRNA as described under
y coexpression of Xlim-1 and Ldb1 are shown. Secondary axis,
dorsalized, embryos with reduced tail region and ectopic muscle
inspection and lack of ectopic muscle formation. Ectopic muscle
gion
, five
ween
assa
ted b
ws);
sual
/101 antibody (lower row).
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460 Hiratani et al.
CCR2 Is Necessary for the Activity of Xlim-1

Xlim-1 is capable of initiating secondary axis formation
in the presence of Ldb1 (Agulnick et al., 1996). To define
egions in CT239-403 required for the axis-inducing activ-
ty of Xlim-1, we tested the activities of a series of Xlim-1

utants by coexpression with Ldb1. Stepwise deletion
nalysis from the C-terminus revealed that deletion of
CR2 and CCR4 dramatically decreased the activity of
lim-1 (Fig. 4A; compare 1-397 with 1-353 and 1-315 with
-272). In contrast, deletions of CCR5, CCR3, and CCR1
howed little effects (Fig. 4A; compare 1-403 with 1-397,
-353 with 1-315, and 1-272 with 1-240, respectively).
urthermore, internal deletion of CCR2 almost completely
bolished the activity (Fig. 4A, D278-292, D278-303), sug-
esting that the activity of Xlim-1 for the organizer function
s mostly dependent on CCR2.

In contrast to CCR2, deletion of CCR1 from wild-type
lim-1 did not seem to decrease nor enhance the activity

Fig. 4A, D241-260), which was also the case when CCR1
as deleted from active forms of Xlim-1, Xlim-1/3m, and
lim-1/DNA (data not shown). Nevertheless, deletion of

CCR1 from Xlim-1(1-315) dramatically enhanced the activ-
ity, which was comparable to that of wild-type Xlim-1 (Fig.
4A, 1-240/261-315). These data suggest that CCR1 nega-
tively regulates the activity of CCR2 in Xlim-1(1-315) and
that in the absence of CCR3–5 (aa 316–403), Ldb1 is
incapable of fully suppressing the inhibitory effects of
CCR1 on CCR2 (see Discussion).

As we have shown by deletion analysis that CCR2 is an
indispensable portion of Xlim-1, we next asked if CCR2
alone was sufficient for the organizer activity of Xlim-1. As
shown in Fig. 4A, while Xlim-1(1-240/261-315), which
contains CCR2 (aa 275–295) with its flanking regions, was
sufficient for maximal activity as described above, further
deletion of the CCR2 flanking regions diminished the
activity (1-240/273-305), and deletion within CCR2 almost
completely abrogated the activity (1-240/287-293). Taken

FIG. 3. Axis duplication activities of Xlim-1 deleted of CCR1 o
(D241-260) or CCR2 (D278-292, D278-303) initiate secondary axis
wild-type Xlim-1 does not. Embryos injected with the mRNAs indic
as secondary axis (solid bars), dorsalized (dotted bars), normal (open
times higher (1 ng/embryo) than those in Figs. 4 and 5 (0.25 ng/emb
embryos; expt, number of independent experiments.
together, these results suggest that CCR2 with its flanking

Copyright © 2000 by Academic Press. All right
egions (aa 261–315) is necessary and sufficient for exerting
aximal organizer activity as measured by secondary axis

ormation.

Five Conserved Tyrosine Residues in CCR2 Are
Essential for the Activity of Xlim-1

To analyze functional amino acid residues in CCR2, we
focused on five tyrosine residues in CCR2 that are perfectly
conserved among the vertebrate members of the Lim1/Lhx1
subclass. Since tyrosine residues possess the potential to be
phosphorylated, site-directed mutagenesis was performed
to change all five tyrosines to either phenylalanine (pre-
venting phosphorylation) or alanine (removing aromatic
side chain). Figure 4B shows that mutation to phenylala-
nine (5YF) did not affect the activity of Xlim-1, indicating
that phosphorylation of tyrosines is not necessary for the
activity. However, mutation to alanine (5YA) abrogated the
ability to cause axis duplication (Fig. 4B), suggesting that
these tyrosine residues are essential for the activity of
Xlim-1 in the Spemann organizer.

CCR2 was shown above to be a negative regulatory region
since deletion of CCR2 led to axis duplication at high doses
(1 ng/embryo) in the absence of Ldb1 (Fig. 3, D278-292,
D278-303). However, the same constructs (D278-292, D278-
303) showed marked reduction in the ability to cause
secondary axis formation compared to wild-type at lower
doses (0.25 ng/embryo) in the presence of Ldb1 (Fig. 4A).
These results suggest that CCR2 is involved in both posi-
tive and negative regulation of Xlim-1 (see Discussion).
However, in the absence of Ldb1, neither Xlim-1(5YF) nor
Xlim-1(5YA) initiates secondary axis formation at high
doses (1 ng/embryo) as opposed to CCR2 deletion mutants
(data not shown), indicating that the tyrosine residues in
CCR2 are not essential for the negative regulation by

R2 in the absence of Ldb1. Xlim-1 constructs deleted of CCR1
ation at high doses (1 ng/embryo) in the absence of Ldb1 while
were scored for axis development at tail-bud stages and categorized
s), or others (hatched bars). Note that the injected doses were four
. b-Globin served as a negative control. n, total number of injected
r CC
form
ated

bar
ryo)
CCR2.
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461Functional Domain Analysis of Xlim-1 in Xenopus
CCR2 Is Directly Involved in the Activation
Function Rather Than in Interaction with Ldb1

Since the analysis of the activation domains shown above
was done in the presence of Ldb1, there remained the
possibility that CCR1 or CCR2 affects the activity of
Xlim-1 through interactions with Ldb1. To address this
issue, we constructed a novel activated form of Xlim-1,
Ldb-Xlim1 (Ldb1/Xlim-1 fusion protein), in which the LIM
domains were replaced with the N-terminal region of Ldb1
(aa 1–291) to bypass the interaction between Xlim-1 and
Ldb1 (Figs. 5A and 5B). This construct is equivalent to the
Drosophila Apterous and Chip/Ldb1 fusion protein, re-
ferred to as ChAp (Milan and Cohen, 1999). Since Ldb-

FIG. 4. Axis duplication activities of Xlim-1 with mutated CT239
mRNA together with the mRNA indicated was injected as descr
described in Fig. 2. CCR2 with its flanking regions (aa 261–315) wa
axis-inducing activity of Xlim-1 in the presence of Ldb1. CCR4 was
but not sufficient (D278-292, D278-303). (B) Effects of point mutation
Substitution of the five conserved tyrosines with phenylalanines
alanines (5YA) abolished the axis-inducing activity of Xlim-1 in the
0.25 (0.5 for pSP64-Xbm-Xlim-1(D241-260)); Ldb1, 0.5; b-globin, 1.
Xlim1 retains the dimerization domain of Ldb1, Ldb-Xlim1

Copyright © 2000 by Academic Press. All right
ossibly forms a dimer and mimics the Xlim-1/Ldb1 tet-
americ complex (Fig. 5A). As expected, Ldb-Xlim1 has
roved to be capable of inducing secondary axis as effec-
ively as Xlim-1/3m and Xlim-1 plus Ldb1 (Fig. 5C and data
ot shown).
Using this construct, we obtained essentially the same

esults as in Fig. 4. Deletion of CCR1 did not seem to affect
he activity of Ldb-Xlim1 (Fig. 5C, D241-260), whereas
CR2 deletion (D278-292, D278-303) as well as mutating

five tyrosine residues within CCR2 to alanine (5YA) abol-
ished the activity, but not mutation to phenylalanine (5YF)
(Fig. 5C). These results suggest that CCR2 is directly
involved in the activation function, and its involvement in

in the presence of Ldb1. (A) Deletion analysis of CT239-403. Ldb1
under Materials and Methods. Axis development was scored as
essary (D278-292, D278-303) and sufficient (1-240/261-315) for the

necessary for the full activity of Xlim-1 (compare 1-397 with 1-353)
five conserved tyrosine residues in CCR2 on the activity of Xlim-1.
ot affect the activity of Xlim-1 (5YF), whereas substitution with
ence of Ldb1. Amount of mRNAs (ng/embryo): Xlim-1 constructs,
-403
ibed
s nec
also
s of

did n
pres

0.
interactions with Ldb1 seems unlikely.
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CCR1 and CCR2 Retain Their Negative and
Positive Regulatory Functions, Respectively,
When Fused to the GAL4DBD

Above results have shown the importance of CCR2 and
CCR4 in the activation function of Xlim-1 and CCR1 and
CCR2 in negative regulation of Xlim-1. Therefore, we next
examined whether CCRs retain their functions when fused to
a heterologous DNA-binding domain. To address this issue,
we developed a Xenopus one-hybrid system in which a GAL4-

FIG. 5. Analysis of CT239-403 using a novel activated form of Xlim
and Ldb1 complex. Left, postulated Xlim-1/Ldb1 tetrameric compl
Ldb-Xlim1. (B) Schematic representation of Ldb-Xlim1. Interaction
Ldb1. The Ldb1 dimerization domain (DD) and the Xlim-1 homeod
LID (LIM interaction domain) of Ldb1, which are responsible for th
of point mutations of five conserved tyrosine residues in CCR2 on t
of Xlim-1 plus Ldb1 when ectopically expressed, thus supporting t
as substitution of five tyrosines in CCR2 with alanines (5YA) abolis
of CCR1 (D241-260) nor substitution of the five tyrosines with phe
(ng/embryo): Ldb-Xlim1 constructs, 0.25; b-globin, 1.0.
UAS system was introduced to Xenopus embryos. In this

Copyright © 2000 by Academic Press. All right
system, we used a UAS-driven luciferase gene construct
(pUAS-Ars194-Luc) as a reporter gene, which has five copies of
the GAL4 binding element upstream of a minimal promoter
from the sea urchin arylsulfatase gene (Kiyama et al., 1998),
and GAL4 DNA-binding domain (GAL4DBD) fusion proteins
as an effector. We first ascertained that the luciferase activity
of this reporter was low enough in Xenopus embryos and was
strongly activated by GAL4DBD-AD, in which the GAL4
activation domain (GAL4AD) is fused to GAL4DBD, as has

db-Xlim1. (A) Diagrams showing possible DNA binding by Xlim-1
ight, possible dimeric complex of the Ldb1/Xlim-1 fusion protein,
een Xlim-1 and Ldb1 was bypassed artificially by fusing Xlim-1 and
in (HD) were retained, while LIM domains A and B of Xlim-1 and
raction, were deleted. NLS, nuclear localization signal. (C) Effects
is duplication activity of Ldb-Xlim1. Ldb-Xlim1 mimics the effects
odel depicted in (A). CCR2 deletion (D278-292, D278-303) as well

the axis-inducing activity of Ldb-Xlim1. However, neither removal
anines (5YF) affects the activity of Ldb-Xlim1. Amount of mRNAs
-1, L
ex. R
betw
oma

e inte
he ax
he m
hed
been shown in the sea urchin (Kiyama et al., 1998).
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463Functional Domain Analysis of Xlim-1 in Xenopus
Using this Xenopus one-hybrid system, several C-terminal
fragments of Xlim-1 fused to GAL4DBD (referred to as
DBD-CT constructs) were tested for transcriptional activity
(Fig. 6A). As shown in Fig. 6B, while DBD-CT239-403 pos-
sessed a significant amount of transcriptional activity (see
239-403), removal of CCR1 further enhanced the activity (see
261-403), indicating that CCR1 retains its negative regulatory
function in this context. Interestingly, aa 293–403 (corre-
sponds to CCR3–5) and aa 239–403 (D278–292) (corresponds
to CCR11CCR3–5) showed similar activity when fused to the
GAL4DBD (Fig. 6B, 293-403 and 239-403(D278-292)). These
results suggest that CCR1 negatively regulates the activity of
CCR2 but not that of CCR3–5.

CCR2 (aa 275–295) with its flanking regions (aa 261–315)
showed strong transcriptional activity comparable to that
of aa 261–403 when fused to GAL4DBD (Fig. 6B, 261-403
and 261-315). Deletion of the CCR2 flanking regions dimin-
ished the activity (DBD-CT273-305, data not shown), and
further deletion within CCR2 completely abrogated the
activity (DBD-CT287-293, data not shown), as is also the

FIG. 6. Transactivation properties of various portions of CT239-
enopus one-hybrid assay. Injection of mRNA and reporter DNA
ctivation of UAS-reporter gene by various portions of CT239-403

egion containing CCR2 functions as a transactivation domain whe
onserved tyrosine residues (261-315(5YA)). CCR1 negatively regu
nd 261-403).
case when the same fragments were fused to Xlim-1(1-240) D

Copyright © 2000 by Academic Press. All right
Fig. 4A). Furthermore, consistent with the results from the
xis duplication assays, substitution of five conserved ty-
osines to alanines abolished the transcriptional activity of
BD-CT261-315 (Fig. 6B, 261-315(5YA)). These results in-
icate that transcriptional activation function of CT239-
03 is mostly dependent on CCR2 and its flanking regions
aa 261–315) and that the conserved tyrosine residues in
CR2 are essential for the activity. However, it should be
oted that, although DBD-CT261-403 and DBD-CT261-315
howed the largest transcriptional activity among the
BD-CT constructs tested, much larger transcriptional

ctivity was observed with DBD-AD (Fig. 6B), which con-
ains an acidic activation domain (aa 768–881) of yeast
AL4. One explanation would be that the activation do-
ain of Xlim-1 is qualitatively different from that of yeast
AL4.
DBD-CT316-403 also possessed a weak transcriptional

ctivity (Fig. 6B). This activity may be dependent on CCR4
aa 353–395), which was shown to be necessary for the full
ctivity of Xlim-1 (Fig. 4A). The fact that DBD-CT293-403,

s assayed by the Xenopus one-hybrid system. (A) Diagram of the
luciferase assay are described under Materials and Methods. (B)
to GAL4DBD (referred to as DBD-CT constructs). The aa 261–315

ed to GAL4DBD (see 261-315), and the activity is dependent on the
the transcriptional activity of DBD-CT239-403 (compare 239-403
403 a
and

fused
n fus
lated
BD-CT239-403(D278-292), and DBD-CT316-403 possess
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464 Hiratani et al.
weak transactivation functions may account for the ability
of Xlim-1(D278-292) or Xlim-1(D278-303) to initiate second-
ry axis formation at high doses in the absence of Ldb1,
espite the lack of CCR2 in these constructs (Fig. 3).

CT261-315 Does Not Interact with CBP, SRC-1, or
TIF2, the Known Transcriptional Coactivators

Understanding the transactivating properties of Xlim-1
CT261-315 requires the identification of the cofactor(s)
interacting with CT261-315. Thus, we have performed GST
pull-down experiments to examine whether CT261-315
could directly interact with the known candidate factors,
CBP (CREB-binding protein), SRC-1 (steroid receptor
coactivator-1), and TIF2 (transcriptional intermediary
factor-2), that function as coactivators for certain classes of
transcription factors. CBP as well as its closely related
protein p300 serve essential coactivator roles for many
classes of sequence-specific transcription factors (Shikama
et al., 1997). SRC-1 and TIF2, members of the p160 family,
are well-known coactivators of nuclear receptors (NRs) that
interact with the NRs in a ligand-dependent manner (Glass
and Rosenfeld, 2000). As shown in Fig. 7, 35S-labeled CBP,
RC-1, and TIF2 proteins bind to appropriate positive
ontrols, Smad3 (Feng et al., 1998; Janknecht et al., 1998) or
Ra(DEF) (Onate et al., 1995; Voegel et al., 1996). However,

we were unable to observe any interactions of CT261-315
with CBP, SRC-1, or TIF2 (Fig. 7). These results suggest that
CT261-315 interacts either with other general transcrip-
tional coactivators or with some cofactor(s) specific to
Xlim-1.

DISCUSSION

The region C-terminal to the homeodomain of Xlim-1
(CT239-403) has been shown to be involved in transcrip-
tional activation based on a yeast one-hybrid system (Breen
et al., 1998). In the present study we demonstrate the
existence of two independent activation domains and a
negative regulatory domain involved in axis formation by
Xlim-1 (Fig. 8A). Furthermore, one of the activation do-
mains (aa 261–315 region) including CCR2 contained con-
served tyrosine residues critical for transcriptional activa-
tion and may define a novel activation motif.

Five tyrosine residues in CCR2 were shown to be essen-
tial for the axis duplication activity of Xlim-1 in whole
embryos as well as the transcriptional activity in Xenopus
one-hybrid assays. A number of transcription factors have
been shown to be activated by phosphorylation (Karin and
Hunter, 1995). In the case of CREB or CREM (De Cesare et
al., 1999), serine phosphorylation in their activation do-
mains allows recruitment of CBP (Shikama et al., 1997), a
large coactivator that contacts the general transcriptional
machinery. Another example is tyrosine phosphorylation in
STATs (Chatterjee-Kishore et al., 2000; Darnell, 1997),

which is hypothesized to trigger translocation of STATs

Copyright © 2000 by Academic Press. All right
nto the nucleus. The involvement of tyrosine phosphory-
ation in transactivation function of Xlim-1, however, is
nlikely because only substitution of the conserved ty-
osines with alanines and not with phenylalanines abro-
ated the activity (Fig. 4B). Nevertheless, the possibility
emains that tyrosine phosphorylation is involved in nega-
ive regulation instead of positive regulation, as has been
xemplified in the case of the nuclear receptor PPARg

(Adams et al., 1997), in which phosphorylation of a critical
serine residue in PPARg results in significant reduction of
transcriptional activity. Previous work also suggests the
existence of posttranslational modification, possibly phos-
phorylation, of Xlim-1 in Xenopus embryos (Karavanov et
al., 1996).

Several types of activation domains have been reported,
which consist of acidic amino acid residues or are rich in
glutamine or proline (Mitchell and Tjian, 1989; Triezen-
berg, 1995). Although an activation domain that contains
tyrosine residues has been reported previously in the
C-terminal region III of the winged helix transcription

FIG. 7. Xlim-1 CT261-315 does not interact with transcriptional
coactivators CBP, SRC-1, or TIF2. (A, B) GST pull-down assays. In
vitro-translated [35S]methionine-labeled CBP (A), SRC-1, and TIF2
(B) were incubated with GST fusion proteins or GST alone, and the
bound proteins were subjected to SDS–PAGE followed by autora-
diography. Whereas CBP and SRC-1/TIF2 interacted with GST-
Smad3 and GST-ERa(DEF) (in the presence of the ligand 1026 M
7b-estradiol), respectively, none of the three coactivators (CBP,

SRC-1, and TIF2) interacted with either GST-CT261-315 or a
tyrosine mutant, GST-CT261-315(5YA). (C) Coomassie brilliant
blue staining of GST fusion proteins. Comparable amounts of GST
fusion proteins (indicated by dots) were used in the assay.
factor HNF3b (Pani et al., 1992), or in a nuclear protein,

s of reproduction in any form reserved.



p
f
t
a
h
t
t

t
L
n
M
o
X
w
l
m
f
s
c
t

r
3
r
d
m
d
m
t
C
B
r
h
s
y
a
n
D
o
X

X
r
C
C
a
d
i
b
m
p
c
b
b
e
c

465Functional Domain Analysis of Xlim-1 in Xenopus
Npw38 (Komuro et al., 1999), tyrosine-rich CCR2 does not
ossess motifs in common with any other transcription
actors yet reported. Thus, this type of tyrosine-dependent
ransactivation domain appears to be unique. The phenyl-
lanine residue, an aromatic amino acid similar to tyrosine,
as been shown to be critical for the transactivation func-
ion of the VP16 activation domain (VP16AD) of an acidic
ype (Cress and Triezenberg, 1991; Regier et al., 1993).

Several global coactivators with histone acetyltransferase
activity such as p300/CBP were shown to interact with the
VP16AD through the phenylalanine 442 as an essential
residue (Utley et al., 1998; Wang et al., 2000). In contrast,
none of the known coactivators tested interacted with the
Xlim-1 transactivation domain, aa 261–315 (Fig. 7). Further-
more, activity of aa 261–315 is much weaker than that of
GAL4AD which is an acidic type of activation domain
similar to VP16AD (Fig. 6B). These results lead to the
possibility that Xlim-1 may not directly interact with
global coactivators and instead may require a specific adap-

FIG. 8. Models of CCR1–CCR5 functions for the activity of
lim-1. (A) Xlim-1 has two activation domains and a negative

egulatory domain in CT239-403. Activation domains (open box):
CR2 and its flanking regions (aa 261–315) and region containing
CR4. Negative regulatory domains (hatched box): LIM domains
nd region stretching across CCR1–2. See Discussion for more
etail. (B) Possible molecular mechanisms for changing between
nactive and active states of Xlim-1. In the absence of Ldb1, Xlim-1
inds corepressor(s), or negative coregulator(s) through LIM do-
ains and CCR1-2, and stays in an inactive state. Once Ldb1 is

resent, Xlim-1 shifts to an activated state as transcriptional
oactivators take the place of negative coregulator(s) through
inding to CCR2. Although a negative coregulator complex that
inds both LIM domains and CCR1–2 is shown, there is no
vidence showing simultaneous binding of a single corepressor
omplex to LIM domains and CCR1–2 at present.
tor protein(s) or transcription factor(s) to exert transactiva-

Copyright © 2000 by Academic Press. All right
ion function. This possibility is supported by a report that
hx2, another member of the LIM-HD proteins, binds to a
uclear protein, MRG1, to recruit p300/CBP (Glenn and
aurer, 1999). Existence of such a specific cofactor(s) might

vercome the requirement of relatively high doses of
lim-1 and Ldb1 mRNAs for secondary axis formation
hen coexpressed in the ventral region compared to the

evel of the endogenous mRNAs in the dorsal mesoderm. It
ight also overcome the inability of Xlim-1 plus Ldb1 to

orm a complete secondary axis which includes a head
tructure (Agulnick et al., 1996). Future work deals with the
haracterization of cofactors that interact with the activa-
ion domains of Xlim-1, CCR2, and CCR4.

Our results also suggest the existence of a negative
egulatory domain stretching across CCR1 and CCR2 (Figs.

and 7A). Two possible models for the mechanism of
epression of Xlim-1 activity by this negative regulatory
omain are proposed: (1) an intramolecular interaction
odel in which CCR1 and CCR2 interact with the LIM

omains to form an inactive conformation or (2) an inter-
olecular interaction model in which these CCRs bind to a

ranscriptional corepressor or a certain protein to prevent
CR2 from binding to a coactivator. Previous work done by
reen et al. (1998) suggests the latter possibility since
emoval of CCR1 from GAL4DBD-CT239-403 led to en-
ancement of transcriptional activity in a yeast one-hybrid
ystem. Interestingly, while our Xenopus one-hybrid anal-
sis is generally consistent with their data, our additional
xis duplication data revealed that removal of CCR1 does
ot enhance the activity of Xlim-1 in the presence of Ldb1.
eletion of CCR1 also did not seem to enhance the activity
f active forms of Xlim-1, Ldb-Xlim1, Xlim-1/3m, and
lim-1/DNA (Figs. 4A and 5C and data not shown). How-

ever, removal of CCR1 from Xlim-1 (1–315) dramatically
enhanced the axis-inducing activity (Fig. 4A). Taken to-
gether, we prefer the view that Xlim-1 might interact with
a putative corepressor(s) through LIM domains and CCR1–2
and stay in an inactive state when Ldb1 is absent (Fig. 8B).
However, once Ldb1 is present, Xlim-1 probably shifts to an
activated state and the transcriptional coactivator(s) takes
the place of the corepressor(s) through binding to CCR2
(Fig. 8B). When CCR3 through CCR5 are absent, Ldb1
possibly fails to fully activate Xlim-1; that is, Ldb1 is
incapable of fully replacing a putative corepressor(s) with a
coactivator(s). There is also a possibility that corepressors
that bind to LIM domains and CCR1–2 are parts of a single
corepressor complex as depicted in Fig. 8B. Recently, RLIM,
a novel LIM-domain-binding corepressor, has been isolated
(Bach et al., 1999). Further analysis is required to see
whether a corepressor complex containing RLIM interacts
with CCR1 and CCR2 together with the LIM domains. In
the future, identification of a corepressor(s) and a coactiva-
tor(s) interacting with CCR1–2 and CCR2/CCR4, respec-
tively, will provide us with deeper insight into the molecu-
lar mechanisms underlying the organizer functions that are

mediated by Xlim-1.
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