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Although early replication has long been associated with 
accessible chromatin, replication timing is not included in most 
discussions of epigenetic marks. This is partly due to a lack of 
understanding of the mechanisms behind this association but the 
issue has also been confounded by studies concluding that there 
are very few changes in replication timing during development. 
Recently, the first genome-wide study of replication timing during 
the course of differentiation revealed extensive changes that were 
strongly associated with changes in transcriptional activity and sub-
nuclear organization. Domains of temporally coordinate replication 
delineate discrete units of chromosome structure and function 
that are characteristic of particular differentiation states. Hence, 
although we are still a long way from understanding the functional 
significance of replication timing, it is clear that replication timing 
is a distinct epigenetic signature of cell differentiation state.

Introduction

The present era is experiencing a burst of research activity directed 
toward understanding how the eukaryotic genome is packaged in the 
cell nucleus. Animal cloning and the ability to induce pluripotency 
have underscored the concept that different cell types share an iden-
tical and complete genome despite their functional non-equivalence. 
It is now a general belief that chromatin is packaged in character-
istic ways that define how genes respond to developmental cues. 
However, it is clear that many modifications of chromatin structure, 
commonly referred to as “epigenetic marks,” are short-lived and 
dynamically reversed during primary transcriptional responses.1,2 
This is not consistent with the concept of epigenetic “inheritance” 
originally invoked by Waddington3,4 and Holliday5-7 to explain the 
process by which cells become irreversibly committed to a particular 
lineage, even when transplanted into another region of a developing 
embryo. Clearly then, one of the important missions of the field of 
“epigenetics” should be to distinguish events associated with lineage 
determination from those that are intimately associated with the 
transcriptional mechanism itself.

In this sense we find it curious that replication timing has 
been left out of important discussions of epigenetics such as the 

NIH Epigenomics Roadmap Initiative (http://nihroadmap.nih.gov/ 
epigenomics/) and the first textbook on Epigenetics.8 Replication 
timing is a mitotically stable yet cell-type specific feature of 
chromosomes.9,10 Chromatin is assembled at the replication fork and 
different types of chromatin are assembled at different times during 
S-phase.11 Every multi-cellular organism studied to date exhibits a 
strong positive correlation between early replication and transcrip-
tion.12 At the same time, changes in replication timing are not 
directly influenced by nor do they have a direct influence on tran-
scription but rather define a level of higher-order organization of the 
genome,9,10,12 which is thought to affect transcriptional competence 
independent of transcription per se. Replication timing is therefore 
more in line with the concept of epigenetic inheritance than most 
histone modifications: indeed, replication defines mitotic inheri-
tance. In fact, the time point of commitment for X chromosome 
inactivation in mammals is independent of transcriptional down-
regulation but is coincident with a nearly chromosome-wide change 
in replication timing of the inactive X,12,13 which is one of the 
best-conserved characteristics of mammalian X chromosome inacti-
vation.14 Recent work demonstrates convincingly that segments of 
all autosomes undergo similar changes in replication timing during 
cell fate determination.10 Hence, changes in replication-timing 
profiles reveal chromosome segments that undergo large changes in 
organization during differentiation and may provide a handle into 
previously impenetrable levels of chromosome organization and their 
relationship to cellular identity. In this essay, we highlight features of 
replication timing that warrant its attention as an epigenetic mark.

Units of Coordinate Replication are Stably Inherited Through 
Multiple Cell Cycles

A great deal of cytogenetic evidence has established replica-
tion timing as a mitotically stable property of chromosomes.9 
Early studies of X chromosome inactivation in female mammals 
demonstrated that once one of the two X chromosomes becomes 
late replicating, the same chromosome remains inactive and late 
replicating throughout the remainder of somatic development.14 
More recently, replication of megabase-sized chromosome segments 
have been visualized as discrete ‘replication foci’ by pulse labeling 
with nucleotide analogs.9,15 Early replication takes place within the 
interior euchromatic compartment of the nucleus, excluding nucleoli 
and blocks of heterochromatin, while late replication takes place at 
the nuclear periphery, the nucleolar periphery, and at internal blocks 
of heterochromatin.15 Pulse-chase experiments have demonstrated 
that each chromosomal segment takes 45–60 minutes to complete 
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and it was proposed that changes in replication timing are limited 
to a specific class of genes that reside within AT-rich regions,27 
providing a potential explanation for why the GC-rich human chro-
mosome 22 showed so few differences. Hence, conflicting data from 
limited comparisons of different cell types were unable to distinguish 
the extent to which replication-timing changes occur during develop-
ment until in 2008, when a genome-wide study of replication timing 
during ESC differentiation to neural precursor cells (NPCs) revealed 
changes across ~20% of the mouse genome.10 Importantly, the 
replication-timing changes that occurred were nearly identical using 
two different neural differentiation protocols and three cell lines. The 
~20% changes seen are certain to be a fraction of the total changes 
that take place during development, since different chromosomal 
segments change replication timing in different cell lineages. Thus, 
it can now be stated confidently that a significant portion of the 
genome is subject to dynamic changes in replication timing during 
development, to create replication timing profiles that are cell-type 
specific. Addressing the extent of profile differences between cell 
lineages is an important future direction.

Early Replication Timing is Associated with “Active” 
Chromatin Structure

A close relationship has been observed between replication 
timing, chromatin structure and transcriptional activity. By the mid 
1970’s it was already known that late-replicating DNA coincided 
with AT-rich, Giemsa-dark, G-bands on metaphase chromosomes 
with low transcriptional activity, while early-replicating DNA coin-
cided with GC-rich, R-bands with high transcriptional activity.35 In 
the 1980’s and 90’s these cytogenetic observations were confirmed at 
a few dozen individual gene loci using molecular approaches, with 
the finding that early replicating genes could be either expressed or 
silent, while late replicating genes were almost always silent, leading 
to the hypothesis that early replication is necessary for transcriptional 
competence but is not sufficient for transcription per se.12 This notion 
was supported by experiments deleting the Locus Control Region 
(LCR) of the human β-globin gene, which abolished β-globin gene 
transcription while early replication timing and DNaseI hypersen-
sitivity remained unaffected.21,22 In fact, reporter plasmids injected 
into early but not late S-phase mammalian nuclei assemble into a 
hyperacetylated chromatin structure permissive for transcription.36 
In the 2000’s, the correlation between early replication timing and 
transcription was validated in higher eukaryotes using various types 
of microarray approaches. In Drosophila, mouse and human, a 
nearly identical strong and statistical positive correlation between 
early replication and transcription was found.10,30,31,37-40 These 
same studies also confirmed that a small number (less than 5% of 
total genes) of late replicating genes were expressed. These genes 
were enriched for CpG-island rich, strong promoters that may render 
regulatory elements accessible even from within hypoacetylated chro-
matin.10 Together, these results support a model in which different 
types of chromatin are assembled onto replication forks at different 
times during S-phase,11 which can influence the expression of many 
but not all genes.

There is also evidence for the reverse type of model: that the 
structure of chromatin can influence replication time. Mutations, 
overexpression, or tethering to specific locus of chromatin modifying 
proteins in both yeast and mammalian systems have varying effects 

 replication,16,17 and labeling foci in living cells demonstrates that 
these segments remain in their respective sub-nuclear locations 
throughout interphase.18 Labeled foci, even adjacent chromosome 
segments that replicate less than two hours apart, remain distinct 
and retain their size and intensity for multiple generations.16,17 
Intriguingly, the entire cohort of foci replicated simultaneously in 
one short time interval have been observed to replicate in almost 
perfect synchrony at the same time in subsequent cell cycles.16-19

These cytogenetic data provide compelling evidence that the 
DNA that replicates together stays together as a stable struc-
tural and functional chromosomal unit for many generations.9 
However, they cannot evaluate the extent to which the molecular 
boundaries between these coordinately replicated units are stable 
within populations of cells. A recent genome-wide microarray 
analysis has demonstrated the existence of precise molecular bound-
aries between coordinately replicating units of chromosomes.10 
Strikingly, three different mouse embryonic stem cell (ESC) lines, 
two from independent mouse strains, as well as induced pluripotent 
stem (iPS) cells derived from mouse tail tip fibroblasts, revealed 
nearly identical replication timing profiles. The distant genetic and 
temporal histories of these cell lines demonstrate convincingly that 
coordinately replicated units of chromosomes or “replication timing 
domains,” are a stable and characteristic property of a particular 
cell type.

Replication Timing is an Epigenetic Signature of Cellular 
Differentiation State

Developmental regulation is a key hallmark of an epigenetic 
mark.7 While the aforementioned observations make a strong case 
for the mitotic inheritance of replication timing profiles in a given 
cell type, evidence for developmental regulation has been primarily 
anecdotal.12 As described, the first and most well-established example 
of developmental regulation of replication timing is X chromosome 
inactivation in female mammals, which accompanies a shift from 
early- to late-replication of the inactive X in the epiblast of ~6.0 dpc 
mice.20 The β-globin locus represents another classic example. In 
non-erythroid cells, β-globin is late replicating and shows features 
of silent chromatin, while in murine erythroleukemia cells that can 
be induced to express high levels of β-globin, the locus is DNaseI-
accessible and early replicating.12,21-23 Several other gene loci 
have been shown to exhibit replication-timing differences between 
different cell lines12 and in the case of the mouse immunoglobulin 
heavy chain locus, earlier replication is also associated with a more 
DNaseI-accessible chromatin conformation.24-26 A limitation to 
most of these studies is that a comparison of different established cell 
culture lines cannot rule out genetic differences or chromosomal aber-
rations that have occurred during long term cell culture. Moreover, 
most genes do not show difference in replication timing between 
different cell types,27,28 and replication timing correlates quite 
strongly with static sequence features of chromosomes (e.g., isochore 
GC content and gene density),29-32 raising legitimate questions as to 
the significance of those few differences that had been identified.33,34 
In fact, a microarray-based comparison of human chromosome 22 
between fibroblast and lymphoblastoid cells revealed that only 1% 
of this chromosome differed in replication time.31

Dynamic changes in replication timing were first confirmed for a 
handful of gene loci during mouse ESC neural differentiation,27,28 
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De-Regulation of Replication Timing is Associated with 
Disease Phenotypes

Temporal control of DNA replication is linked to many basic 
cellular processes that are regulated both during the cell cycle and 
during development. In several model systems, defects in replication 
timing are associated with defects in chromosome condensation, sister 
chromatid cohesion and genome stability.56,57 Abnormal replication-
timing control has become a clinical marker for predicting malignant 
cancers.58-62 In particular, specific chromosome translocations result 
in a chromosome-wide delay in replication timing that triggers addi-
tional chromosome translocations at a high frequency.63,64 Finally, 
cells from patients with several inherited human diseases show 
defects in replication timing that correlate with misregulation of 
genes during development.65-72 These studies, at present still limited 
in scope, associate aberrations in replication timing with pheno-
typic consequences and strengthen the case for a role of replication 
timing in chromosome structure and function. Its role is still elusive 
and may extend beyond regulation of transcription: the locations 
and directions of replication forks, the organization of replication 
complexes that coordinate replication of large domains, and the loca-
tions of domain boundaries may constitute an epigenetic basis for 
tissue-specific or cancer-promoting differences in genome stability. 
Nonetheless, these studies demonstrate that replication timing is a 
property of chromosomes that is not dictated by DNA sequence 
but is somatically heritable and linked to phenotype, consistent with 
both old and new definitions of an epigenetic mark.

Conclusions

A large body of evidence has confirmed strong associations 
between replication timing and important properties of chromatin. 
While the contribution of replication timing to phenotype remains 
a mystery, a strong case can be made for replication timing as an 
epigenetic mark that is a stable, heritable property of different cell 
types. We anticipate that studies of replication timing in many 
cell types from varied differentiation pathways will provide novel 
insights into epigenetic regulation, particularly with regards to 
previously impenetrable higher-order multi-megabase levels of 
chromosome organization. The mere fact that different types of 
chromatin are assembled at different times during S-phase places 
replication timing at the intersection of physical, spatial and 
temporal organization of chromosomes.
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