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Abstract

Many types of epigenetic profiling have been used to classify stem cells, stages of cellular differentiation, and cancer
subtypes. Existing methods focus on local chromatin features such as DNA methylation and histone modifications that
require extensive analysis for genome-wide coverage. Replication timing has emerged as a highly stable cell type-specific
epigenetic feature that is regulated at the megabase-level and is easily and comprehensively analyzed genome-wide. Here,
we describe a cell classification method using 67 individual replication profiles from 34 mouse and human cell lines and
stem cell-derived tissues, including new data for mesendoderm, definitive endoderm, mesoderm and smooth muscle. Using
a Monte-Carlo approach for selecting features of replication profiles conserved in each cell type, we identify ‘‘replication
timing fingerprints’’ unique to each cell type and apply a k nearest neighbor approach to predict known and unknown cell
types. Our method correctly classifies 67/67 independent replication-timing profiles, including those derived from closely
related intermediate stages. We also apply this method to derive fingerprints for pluripotency in human and mouse cells.
Interestingly, the mouse pluripotency fingerprint overlaps almost completely with previously identified genomic segments
that switch from early to late replication as pluripotency is lost. Thereafter, replication timing and transcription within these
regions become difficult to reprogram back to pluripotency, suggesting these regions highlight an epigenetic barrier to
reprogramming. In addition, the major histone cluster Hist1 consistently becomes later replicating in committed cell types,
and several histone H1 genes in this cluster are downregulated during differentiation, suggesting a possible instrument for
the chromatin compaction observed during differentiation. Finally, we demonstrate that unknown samples can be classified
independently using site-specific PCR against fingerprint regions. In sum, replication fingerprints provide a comprehensive
means for cell characterization and are a promising tool for identifying regions with cell type-specific organization.
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Introduction

In mammals, replication of the genome occurs in large,

coordinately firing regions called replication domains [1–7]. These

domains are typically one to several megabases, roughly align to

genomic features such as isochores, and are closely tied to

subnuclear position, with transitions to the nuclear interior often

coupled to earlier replication, and transitions to the periphery to

later replication [4,5,8,9]. Given their connections to subnuclear

position and remarkably strong correlation to chromatin interac-

tion maps [3], replication profiles provide a window into large-

scale genome organization changes important for establishing

cellular identity. The organization of replication domains is cell-

type specific, and a larger number of smaller replication domains is

a property of embryonic stem cells (ESCs) [3–5]. Importantly, in

both humans and mice, induced pluripotent stem cells (iPSCs)

reprogrammed from fibroblasts display a timing profile almost

indistinguishable from ESCs, suggesting that replication profiles

may also be used to measure cellular potency [3,5].

While a wide-range of cell classification methods are actively

used, the most common practice for verifying identity is to monitor

a handful of molecular markers, some of which are shared with

other cell types. Genome-wide classification of features such as

DNA methylation [10–12], transcription [13,14] and histone

modifications [15,16] have in principle more potential to

accurately distinguish specific cell types. However, these features

of chromatin are highly dynamic at any given genomic site [17],

and most measurements require high-resolution arrays and costly

antibodies. Moreover, recent reports highlight the unstable nature

of transcription and related epigenetic marks in multiple

embryonic stem cell lines [18,19]. By contrast, since replication

is regulated at the level of large domains, replication profiles are

considerably less complex to generate and interpret than other

molecular profiles. Timing changes occurring during differentia-

tion are on the order of several hundred kilobases and are highly

reproducible between various stem cell lines [3–5]. They are also

robust to changes in individual chromatin modifications, retaining

their normal developmental pattern in G9a(2/2) cells despite
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strong upregulation of G9a target genes and near-complete loss of

H3K9me2 [8].

Here, we describe a method for classifying cell types—

replication fingerprinting—based on genome-wide replication

timing patterns in mouse and human ESCs and other cell types.

We applied the method to 67 (36 mouse and 31 human) whole-

genome replication timing datasets to demonstrate the feasibility of

classifying cell types using a minimal set of cell type-specific

regions. After identification, these regions were used to classify two

independent samples using site-specific PCR. We also demonstrate

that loss of pluripotency is accompanied by consistent changes in

replication timing, implicating the replication program as an

important factor in maintaining pluripotency and revealing a

novel fingerprint for pluripotent stem cells.

Results

Generation of replication profiles
In addition to our previously reported replication profiles,

BG02 hESCs were differentiated to mesendoderm and definitive

endoderm as previously described [20], as well as ISL+
mesoderm and smooth muscle cultured in defined medium

(Methods), and profiled for replication. Replication profiles were

generated as described previously [3–5,21]. In brief, nascent

DNA fractions were collected in early and late S-phase,

differentially labeled, and co-hybridized to a whole-genome

CGH microarray. The ratio of early and late fraction abundance

for each probe—‘‘replication timing ratio’’—represents its

relative time of replication. Values from individual probes are

then smoothed using LOESS (a locally weighted smoothing

function), and plotted on log scale (Figure 1). Replication profiles

generated in this way are freely available to view or download at

www.ReplicationDomain.org [22], and those analyzed in this

report are summarized in Table S1.

Generation of replication fingerprints
Figure 1 illustrates the basic concept of replication fingerprint-

ing. Two exemplary profiles each for D3 embryonic stem cells

(ESCs; blue) and D3 ESC-derived neural precursor cells (NPCs;

green) are overlaid. Given that most of the genome is conserved in

replication timing between any two cell types (e.g. 80% conserved

between ESCs and NPCs [4]), the first challenge is to choose

genomic regions that are differentially replicated within a set of cell

types. We define a ‘‘replication fingerprint’’ of a cell type as a set of

genomic regions useful for classification, along with their

associated replication timing values. For a simplified example,

we show exemplary fingerprint regions for a segment of

chromosome 7 (Figure 1A, gray bars). Note that the four regions

change dramatically upon differentiation to neural precursors (e.g.,

ESC2 vs. NPC1; Figure 1A,B), but have replication timing values

that are well conserved between replicate experiments (e.g., ESC1

vs. ESC2). We and others have observed similarly widespread

changes in replication profiles between any two different cell types

profiled to date [1,3–5,7].

As classification methods require a measure of distance between

samples, we defined the distance between replication profiles as

the sum of absolute differences in replication timing in

fingerprinting regions (Figure 1B). To select an optimal set of

fingerprinting regions we maximize a ‘‘distance ratio,’’ represent-

ing the ratio of the average distance between unlike cell types to

the average distance between equivalent cell types (Figure 1C).

This ratio is maximized by selecting regions that are consistently

different in replication timing between different cell types, but

consistently similar between equivalent types. Importantly, the

assignment of unlike vs. equivalent cell types is user-defined and

flexible, allowing selection of features that best distinguish any

group of cells from any other, such as ESCs from NPCs, normal

from disease-related cells, or pluripotent from committed cells.

While Figure 1 shows a simplified example of four regions

distinguishing ESCs from NPCs, real-world classification requires

the ability to make distinctions genome-wide between many cell

types, making manual selection of regions impractical. Therefore,

to make the method generally applicable, we developed an

automated algorithm based on Monte Carlo sampling [23] to

select regions that best distinguish between all available cell types

in genome-wide replication datasets. Alternative approaches

evaluated for feature selection and classification included Bayesian

networks, nearest neighbor methods, decision trees and SVMs,

which were comparably successful only for smaller collections of

cell types. We chose to explicitly maximize distances between cell

types in the method described here in anticipation of translating

cell classification to more convenient empirical assays with a

limited number of features, because larger timing differences are

easier to verify empirically and are more robust to experimental

and biological variation.

Monte Carlo optimization of fingerprint regions
In practice, replication fingerprinting is a feature selection

problem. Although most genome-wide approaches are both simple

and comprehensive, we found that genome-wide correlations and

distances, while a good first approximation of the relatedness

between cell types, are not ideal for classification as the small

amount of noise in regions with conserved replication timing is

compounded over this relatively large fraction of the genome

(Figure S1). We therefore wish to exclude domains that are noisy

(having high technical or biological variability), irrelevant

(conserved in all cell types), or redundant (containing overlapping

information). To achieve this, we first remove regions with

conserved replication timing between cell types, resulting in a set

of informative regions that can be further optimized by a Monte

Carlo selection algorithm.

Figure S2 depicts the Monte Carlo algorithm. To reduce noise

from individual probe measurements, replication profiles are first

averaged into nonoverlapping windows of approximately 200 kb.

Author Summary

While continued advances in stem cell and cancer biology
have uncovered a growing list of clinical applications for
stem cell technology, errors in indentifying cell lines have
undermined a number of recent studies, highlighting a
growing need for improvements in cell typing methods for
both basic biological and clinical applications of stem cells.
Induced pluripotent stem cells (iPSCs)—adult cells repro-
grammed to a pluripotent state—show great promise for
patient-specific stem cell treatments, but more efficient
derivation of iPSCs depends on a more comprehensive
understanding of pluripotency. Here, we describe a
method to identify sets of regions that replicate at unique
times in any given cell type (replication timing fingerprints)
using pluripotent stem cells as an example, and show that
genes in the pluripotency fingerprint belong to a class
previously shown to be resistant to reprogramming in
iPSCs, identifying potential new target genes for more
efficient iPSC production. We propose that the order in
which DNA is replicated (replication timing) provides a
novel means for classifying cell types, and can reveal cell
type specific features of genome organization.

A Fingerprint for Cell Identity and Pluripotency
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This window size represents a balance between sizes of the regions

that change replication timing during development (400–800 kb),

and the number of probes needed for timing changes to be

deemed statistically significant (35–180 probes are contained in

each window depending on the probe density of the array

platform; see Methods, Table S2). An initial set of regions with the

highest replication timing changes in the set of replication profiles

are chosen to exclude regions with conserved replication timing,

and half of these starting regions are randomly selected to calculate

initial distances between cell types. At each iteration of the

algorithm, a region can be added to the set of fingerprint regions,

removed from the set, or swapped with an unused region. Using a

Metropolis-Hastings criterion [23,24], moves that improve the

overall distance ratio are accepted with higher probability than

those that do not; after 20,000 or more such moves, a final set of

fingerprinting regions is selected.

As depicted in Figure 2, the fingerprinting algorithm selects

domains with large and reproducible replication timing differences

between cell types, discarding those with minimal or variable

changes. Before selecting optimal regions (Figure 2A,C), the

average distance between ‘‘like’’ and ‘‘unlike’’ cell types are

similar, translating into classification errors for randomly selected

domains (Figure 2C) as well as the whole genome (Figure S1, red

shading). After selection, the separation in distances between like

and unlike types becomes very distinct (Figure 2B, D), even for

closely related cell types (Figure 3). These regions similarly

highlight distinctions between cell types both in correlations

(Figure S3, S4, S5, S6, S7, S8), and distance matrices between cell

types (Figure S9, S10, S11, S12).

Since Monte Carlo selection is stochastic, different sets of

fingerprinting regions can be selected in different runs. To

evaluate the stability of regions included in replication fingerprints,

we applied the algorithm 100 times for each type of human and

mouse fingerprint constructed (Figure S13). Results demonstrate

that fingerprinting regions are well-conserved among multiple

rounds of selection, with the top 10–14 regions selected in 100/

100 trials in each case. For all subsequent classification, we used

regions included in at least 75/100 fingerprinting runs.

As the distances between profiles derive from either the same or

different cell types (Figure 2C), their distributions can be used to

create a general classifier (Figure 2C,D, Figure 3A), with an error

rate proportional to the overlap in distances shared by ‘‘like’’ and

‘‘unlike’’ cell type comparisons (Figure 2C,D, blue shading). This

allows us to state a level of confidence for a given prediction, as

well as estimate the similarity of a cell type to others. To refine this

classification, we applied the k-nearest-neighbor rule [25] (kNN;

k = 3) to assign cell types according to the three most similar

profiles in the training set. Distances below the threshold – h= 2.4

in Figure 2D – are hypothesized to derive from similar cell types,

and are used with kNN to classify profiles according to the closest

profiles in the training set. Distances above the threshold are

presumed to derive from different cell types, preventing kNN from

classifying highly divergent RT profiles as the cell type of the most

similar known profile.

Figure 1. A simplified replication timing fingerprint. A. Four 200 kb regions in chromosome 7, highlighted in grey, are selected for a simplified
fingerprint using two replicates each of ESCs (light and dark blue) and NPCs (light and dark green). B. The replication timing ratio for each region in
each experiment is shown, with the total distances in replication timing for all fingerprinting regions between replicates of ESCs or NPCs in grey. Note
that distances between the two different cell types (ESC vs. NPC) are substantially higher than those between replicate profiles (e.g., 6.1 for ESC2 vs.
NPC1; shown between the grey boxes). C. Total differences in replication timing for all four fingerprinting regions between all combinations of the
two replicates from these two cell types are shown. Highlighted in grey are the values for the two replicates of each cell type, which are considerably
less than the values for any of the inter-cell type comparisons. Shown below the table is the ‘‘Distance ratio’’, calculated as the average distance
between cell types (or between replicates) divided by the average distance within cell types. The Distance ratio represents the degree of separation
between replication profiles in regions used for classification.
doi:10.1371/journal.pcbi.1002225.g001

A Fingerprint for Cell Identity and Pluripotency
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Classification of cell types using fingerprint regions
To test the ability of our method to select suitable regions for

classification, we applied it to predict the known identity of 9

mouse and 7 human cell types with 36 and 31 total experimental

replicates, respectively. Datasets used for prediction are summa-

rized in Table S1, with most described in detail in previous

publications [3–5]. Rough classification of each experiment into

like and unlike cell types by a distance ratio cutoff was accurate in

951/961 (99.0%) human and 1250/1296 (96.5%) mouse compar-

isons respectively (Figure 3A,B). Refining this classifier by using

kNN to assign cell types according to the three most similar

profiles in the training set resulted in correct predictions for 36/36

mouse and 31/31 human replication timing profiles (Figure 3C,D).

Strikingly, even closely related cell types could be reliably

distinguished using this method, such as mouse ESCs and early

primitive ectoderm-like stem cells (EPL/EBM3), and two day

intermediates of human ESC differentiation into endomesoderm

(DE2; day 2) and definitive endoderm (DE4; day 4). Thus,

replication profiles appear capable of distinguishing among a wide

array of cell types in early mouse and human development.

Confirmation and generalizability of replication
fingerprints

The use of all experimental data in a selection algorithm often

results in overfitting the model to a limited set of observations. For

this reason, machine-learning algorithms are commonly trained

and tested on different subsets of data (termed cross-validation). To

determine whether overfitting is occurring in our selection method

and assess the degree to which fingerprinting domains are

generally cell type-specific, we performed leave-one-out cross-

validation (LOOCV) with each of the available experiments by

constructing fingerprints using all but one experimental replicate,

and testing classification on the remaining replicate. In all cases

(31/31 human, 36/36 mouse), correct predictions in the excluded

profile confirmed that fingerprinting regions remained consistent

with cell type, and that most cell-line-specific differences were

discarded (Figure 3C, LOOCV column). This was also true for a

cell line with only one replicate (mouse 46C neural precursor cells),

implying that most of the regions of differential replication timing

useful for classification are shared between cell lines.

To simulate the classification of a cell type not yet encountered

in the training set, we tested predictions after selecting finger-

printing regions with all replicates of a given cell type excluded

(Figure 3C, LCTO column). This confirmed that most cell types

not yet encountered were correctly classified as ‘‘Unseen’’ (7/7 cell

types in human, 7/9 in mouse). However, two cases in which

profiles were ambiguous were between neural precursors (NPCs)

and mouse epiblast-like stem cells (EpiSCs, EBM6), suggesting that

closely related cell types are more accurately distinguished when

examples of each type are included in the training set.

A replication fingerprint for pluripotency
One of the most striking features of replication timing is its

widespread consolidation into larger replication domains during

Figure 2. Monte Carlo optimization of fingerprinting regions. A Monte Carlo algorithm is used to select regions with maximal differences in
replication timing between cell types and minimal differences between replicates to obtain an optimized set of genomic regions for classification
using the nearest-neighbor method. A,B. Selection of fingerprinting regions accentuates differences between cell types while diminishing those
within equivalent cell types (light gray) and replicates (dark gray). C,D. To calculate confidence levels of predictions we use the distributions of
distances within (grey) and between (red) cell types, shown here for 30 runs before and after selection. The error rate of prediction is represented by
the blue shaded area shared by comparisons between similar or distinct cell types, with average distances of xS and xD respectively. The optimal
classifier, h, is estimated by minimizing the number of misclassified distances as in Figure 3 and Figure 4. Above this distance, datasets are predicted
to originate from different cell types.
doi:10.1371/journal.pcbi.1002225.g002

A Fingerprint for Cell Identity and Pluripotency
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Figure 3. Cell type classification using Monte-Carlo selected domains. A,B. (Top panel) Distribution of distances within (blue) and between
(gray) all human replication profiles for consensus fingerprinting domains in human (A) and mouse (B) cell types. (Bottom panel) Number of
classification errors as a function of distance ratio cutoff. The optimal classifier (h) is that which minimizes classification errors, with distances above h
hypothesized to originate from different cell types. C,D. Human dataset classification results for the standard kNN method (Standard) leave-one-out
crossvalidation (LOOCV), and with each cell type excluded from training (LCTO). For LOOCV, each experiment (e.g., BG01ES.R1) is classified using 20
regions selected with that experiment left out. For LCTO, experiments are labeled as the most similar type in the training set, or correctly classified as
‘‘Unseen’’ for distances above h. Experimental replicates are denoted with suffixes ‘R1’, ‘R2’, etc, and are described in Table S1.
doi:10.1371/journal.pcbi.1002225.g003

A Fingerprint for Cell Identity and Pluripotency
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neural differentiation, concomitant with global compaction of

chromatin [3,4]. This consolidation, along with recovery of ESC

replication timing by induced pluripotent stem cells (iPSCs),

suggested that replication patterns in specific regions of the

genome are associated with the pluripotent state. Further, if

certain timing changes are a stable property of cellular

commitment, they may provide a unique opportunity to evaluate

differentiation capacity using replication-timing patterns. To

explore this, we analyzed the differences in replication profiles

between collections of pluripotent/reversible (ESCs, iPSCs,

EBM3) and committed cell types in 13 human and 21 mouse

cell lines (Figure 4A). In each case, we created a stringent

consensus fingerprint for classification consisting of regions found

in .75/100 runs (18 regions each in mouse and human), and

examined genes in the top 200 fingerprint regions (,2% of the

genome) to characterize a more inclusive sample. Genes and

regions found to consistently switch to earlier or later replication as

pluripotency is lost are provided in Tables S3, S4, S5, S6.

Strikingly, several regions displayed conserved, significant

differences in timing between all pluripotent and committed cell

types (Figures 4A, S10, S12). As with general fingerprints,

classification into pluripotent or committed types could be

performed unambiguously (36/36 cases in mouse, 31/31 in

human), even with regions selected with the test profile excluded

(LOOCV column). Several of the genes consistently switching to

later replication in mouse and human pluripotency fingerprints

have known roles in maintaining pluripotency (for instance,

Dppa2 and Dppa4 in both species, and DKK1 in human; Tables

S4 and S6). In addition, two classes of genes stood out from this

analysis that showed significant switches to later replication in both

species: a large cluster of protocadherins (PCDs), and the majority

of the Hist1 cluster of core histone genes (Table S7). The former

are developmentally regulated genes with broad involvement in

neural development and cell-cell signaling [26,27], and switch to

later replication in all committed mouse and human cell types.

The latter Hist1 cluster was later replicating in 8/8 committed cell

types in mouse and 5/6 in human (not lymphoblasts), and includes

several core histone genes that were downregulated up to 2.5-fold

in NPCs. These results are intriguing in light of previous reports of

histone downregulation during development [28], as well as a

hyperdynamic chromatin phenotype in ESCs that involves higher

exchange rates of histone H1 [29] and is required for efficient

somatic cell nuclear reprogramming in Xenopus oocytes [30].

Importantly, all of the histone H1 genes are found in this cluster,

suggesting that regulation of global H1 abundance may provide a

mechanism for the overall chromatin compaction and consolida-

tion of replication timing observed during neural differentiation

[3–5].

To characterize the genes included in the mouse pluripotency

fingerprint, we compared them to a previous class of genes that

showed lineage-independent switches to later replication in mouse

ESC differentiation, and failed to revert to ESC-like expression in

three separately derived samples of partial iPSCs (clusters 15 and

16 in Figure 7 of Hiratani et al., 2010). Remarkably, 200 out of

217 genes in the top 100 mouse pluripotency regions belonged to

this class, despite very different methods for deriving them

(Figure 5A). All of the fingerprint genes switched to later

replication, and at the transition between early and late epiblast

stages where cell fates become restricted [5]. Most genes also had

reduced expression in late epiblast and neural progenitor stages

(average 1.66-fold reduction in transcription from ESC/EBM3 to

EBM6/NPCs). Thus, some of these genes may make prime

candidates for improving the efficiency of iPSC production, or for

reverting human ESCs to a more naive, mouse ESC-like state.

However, the overlap between human and mouse pluripotency

fingerprint genes, while significant, was much lower (Figure 5A),

and this was true even when comparing human ESCs to

developmentally analogous mouse EpiSCs [3,31]. Therefore,

many pluripotency-associated genes and loci may be species-

specific, consistent with recent studies that underscore consider-

able differences between mouse and human pluripotency networks

[32,33]. This low alignment is also accounted for by a general

drop in overall alignment in regions with the greatest develop-

mental switches in replication timing (Figure 5B), which are those

preferentially selected by the fingerprinting algorithm.

Of the genes conserved in the fingerprints of both species

(indicated by boldface type in Tables S4 and S6), most belong to

the aforementioned large class of protocadherins. However,

Dppa2 and Dppa4 are also conserved, as well as genes with no

known roles in maintaining pluripotency (Cast, Riok2, Lix1) that

reside within the same replication units as pluripotency fingerprint

genes in both species. Other core pluripotency genes remain

relatively early replicating in both species (Pou5f1[Oct4], Sox2,

Nanog), and are likely regulated by other mechanisms. For

instance, Sox2 belongs to a class of genes with strong promoters

(HCP, or high CPG content promoters) generally unaffected by

local replication timing [4,34].

Independent verification of fingerprint classification by
PCR

One potential application of replication fingerprints is in the

development of PCR kits for epigenetic classification, particularly

for cell types or disease samples with no known aberrations in

transcription or sequence. To confirm that fingerprint regions can

be translated into a classification scheme using site-specific PCR,

we classified two unknown samples representing cell types that

were analyzed previously, but that were derived from different cell

lines than the original set used for training. The experiment was

performed in a blind manner in which the experimenter had no

prior knowledge of the regions or cell types being tested. Primers

were assembled against sequences within 10–20 kb from the

center of each fingerprint region, and the replication times of each

region were quantified as the ‘‘relative early S phase abundance’’

(relative abundance of a sequence in nascent strands from early S

phase), as previously described [35] (Figure 6A). PCR-based

timing values were rescaled for consistency with the original scale

of the array datasets used in training, and distances were

calculated between the unknown samples and other human

profiles in fingerprint regions (Figure 6B). Using the same methods

as in prior classifications, these distances correctly identified the

two unknown samples as lymphoblasts and hESCs, respectively;

the three known datasets with the smallest distances were each of

the correct cell type.

Discussion

Advantages and caveats of replication profiles for cell
typing

Our method for cell typing through replication fingerprinting

addresses a well-recognized need for comprehensive methods to

assess cellular identity and differentiation potential in stem cell

biology. Unlike other molecular markers, replication is regulated

at the level of large, multi-megabase domains, making compre-

hensive, genome-wide profiles relatively simple to generate and

interpret [36]. In particular, the robust stability of replication

timing profiles in stem cells [8], and wide divergence between cell

types make them a promising candidate for classification.

A Fingerprint for Cell Identity and Pluripotency
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While the functional role for the replication program is not yet

understood, its conservation between human and mouse cell

culture models of development support its functional significance.

We and others have shown a substantial correlation (R2 = 0.42–

0.53) in replication patterns between mouse and human cell types,

with timing patterns of embryonic stem cells, neural precursor

cells, and lymphoblastoid cells most closely aligned to their

cognate in the other species [1,3]. The important role for

replication is further corroborated by its remarkably strong link

to genome organization [3], and its ability to confirm the mouse

epiblast identity of human ESCs genome-wide and with an

epigenetic property [3,31].

Figure 4. Identification of cell type- and pluripotency-specific regions. A. Construction of a general classifier for distinguishing pluripotent
from committed mouse and human cell types, with results summarized in the tables below for the standard kNN method and leave-one-out
crossvalidation. B. Representative fingerprint regions are shown for three cases: general classification (left), distinguishing pluiripotent vs. committed
cell types (middle), and identifying cell-type-specific (here, lymphoblast-specific) regions (right). Lines represent averaged profiles for each cell type.
Several EtoL regions in the pluripotency fingerprint contain genes known to function in maintaining stem cell identity, such as Dickkopf homolog
DKK1, while uniquely early regions in cell type-specific fingerprints often feature genes with relevant functional or disease associations, such as IKZF1
in lymphoblast cells.
doi:10.1371/journal.pcbi.1002225.g004

A Fingerprint for Cell Identity and Pluripotency
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By comparison, methods for cell typing using DNA methylation,

gene expression, histone modifications or protein markers are well

suited to some applications [10–16], but may not be informative for

certain fractions of the genome, or may rely on genome features that

cannot distinguish between similar cell states. We therefore envision

replication fingerprinting as a complement to existing cell typing

strategies that may be used for samples unsuitable for traditional

methods, or for additional confidence in assessing cell identity in

cases where this is critical, such as regenerative medicine. One

caveat to consider in these applications is that replication profiles,

similar to other genome-wide methods, are an ensemble aggregate

from many cells, making measurement of homogeneity difficult. In

addition, as with other supervised classification approaches, the

method is informative only for cell types (classes) available during

training. However, our fingerprinting method is in principle

applicable to any data type, and may be modified to select

discriminating features in other epigenetic profiles.

A major advantage of our fingerprinting method is in selection

of a minimal set of regions that allow for classification with a

straightforward PCR-based timing assay and a reasonably small

set of primers, particularly if only cell-type specific regions are

examined. Our results suggest that a standard set of 20 fingerprint

loci can be effective for classification, but the number of regions

queried can be adjusted based on the confidence level required.

The sole requirement for replication profiling is the collection of a

sufficient number of proliferating cells for sorting on a flow

cytometer. Consistently, just as replication fingerprints can be

generated for particular cell types or general categories of cells,

features of replication profiles allow for the creation of disease-

specific fingerprints, which may be valuable for prognosis.

Consistent timing changes between pluripotent and
committed cell types

In addition to cell typing applications, replication profiling is

informative for basic biological questions. Here, we have identified

regions that may undergo important organizational changes upon

differentiation, which include a class of gene that fail to reverse

expression in partial iPSCs, and the majority of mouse and human

Figure 5. Conservation of mouse and human pluripotency fingerprint genes. A. Venn diagram showing the overlap in genes that fail to
reprogram expression in partial iPSCs (clusters 15 and 16 in Hiratani et al., 2010) and the mouse pluripotency fingerprint (left), between the human
and mouse ESC fingerprints (middle), and the human ESC and mouse EpiSC fingerprint (right). B. Conservation (R2) of replication timing between
human and mouse lymphoblasts (hLymph-mLymph), neural precursors (hNPC-mNPC) and primed stem cells (hESC-mEpiSC) as a function of
developmental timing changes. For the most closely aligned samples, both relatively static and highly dynamic regions show a decreased alignment
in replication timing between species.
doi:10.1371/journal.pcbi.1002225.g005
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histone H1 genes. Human lymphoblasts retained early replication in

H1 genes, which may be explained by their high rate of proliferation.

Since highly developmentally plastic regions (including pluripotency

fingerprint regions) are poorly conserved (Figure 5B) the evolution-

ary conservation of cell-type specific timing patterns must be driven

by the moderately changing majority of the genome.

The recent derivation of mouse ESC-like human stem cells with

various methods raises an intriguing question [37]: will naı̈ve

hESCs align better to mESCs than to mEpiSCs for replication

timing as they have for transcription? Although pluripotency is

currently assessed by marker gene expression or laborious

complementation experiments, replication timing assays in regions

uniquely early or late replicating in pluripotent cells provide a

tractable method to predict the pluripotency of various cell types,

as well as insights into conserved genome organizational changes

during differentiation.

Methods

Cell culture and differentiation
Mouse replication timing datasets are described in Hiratani

et al., 2010. Briefly, mouse embryonic stem cells (ESCs) from D3,

TT2, and 46C cell lines were subjected to either 6-day (46C) or

9-day (D3, TT2) neural differentiation protocols to generate

neural progenitor cells (NPCs) [4,5]. For D3, intermediates were

also profiled after 3 (EBM3) and 6 (EBM6) days of differentiation.

Muscle stem cells (myoblast) and induced pluripotent stem cells

(iPSCs) reprogrammed from fibroblasts were collected as

described for human and mouse [38–40]. For human timing

datasets, neural precursors were differentiated from BG01 ESCs

as described in Schulz et al., 2004 [3,41]. Lymphoblast cell lines

GM06990 and C0202 were cultured as previously described

[2,42]. Differentiation of BG02 hESCs to mesendoderm (DE2)

and definitive endoderm (DE4) was performed by switching from

defined media (McLean et al. [20]) to DMEM/F12+100 ng/ml

Activin A 20 ng/ml Fgf2 for two and four days, respectively, with

25 ng/ml Wnt3a added on the first day. Mesoderm and smooth

muscle cells were derived by adding BMP4 to DE2 cells at

100 ng/ml.

Generation and preprocessing of microarray datasets
Using custom R/Bioconductor scripts [43,44], microarray

data from Hiratani et al. 2008, Hiratani et al. 2010, and Ryba et

al., 2010 were normalized to equivalent scales, and averaged in

Figure 6. Independent verification of fingerprint classification by PCR. A. NC-NC lymphoblasts and WIBR3 hESCs were BrdU labeled, early
and late nascent strands were purified as for all other cells, and nascent strands were analyzed blindly by PCR using primers specific to 20 human
fingerprint regions and control regions (mito: mitochondrial DNA, a-globin, b-globin). Replication times are represented by the relative abundance of
each sequence in early S phase as a fraction of its abundance in both early and late S. Error bars depict the average and SEM for each locus after 6
replicate experiments. B. Euclidean distances between replication profiles measured in fingerprint regions described in Table 1, after rescaling PCR
values to array scale. Color scale for numbers relates the relative similarity of cell types in fingerprint regions, from highly similar (red) to highly
divergent (blue). The three lowest distances used for kNN classification (k = 3) are highlighted in bold font, with unknown samples #1 and #2
correctly designated as lymphoblasts and ESCs, respectively using the three shortest distances.
doi:10.1371/journal.pcbi.1002225.g006
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nonoverlapping windows of approximately 200 kb. Additional

profiles for human ESCs, definitive endoderm, mesendoderm,

mesoderm, and smooth muscle were derived, normalized and

scaled equivalently, as described [45]. Profiles shown in Figure 1

and Figure 4 were smoothed using LOESS with a span of

300 kb.

Monte Carlo selection of fingerprinting regions
Selection of fingerprint regions was performed as described

using custom R/Bioconductor scripts. Regions of non-conserved

RT (2000/10994 mouse, 2000/12625 human) were first selected

based on standard deviation, then optimized using a Monte Carlo

algorithm (Figure S2). Using the Metropolis-Hastings criterion for

Table 1. Primers used for PCR fingerprint verification.

Genomic region

Region F/R Sequence Length Product region (Hg18)/Size Chr Start End

551 Forward ACATGGGCGTGCAATCCCCA 20 chr1:145,442,862–145,443,081 chr1 145,439,397 145,449,397

Reverse GGCCCTGGTTGCTAGGTGCG 20 220

647 Forward GCAAAACGGCCAACGGCTGA 20 chr1:167,999,361–167,999,518 chr1 167,993,179 168,003,179

Reverse GGCCTGCCAGTGCTGAGAGG 20 158

927 Forward TTGGCCCACGTGTGGGGAGA 20 chr1:230,199,814–230,200,011 chr1 230,199,352 230,209,352

Reverse TGACCCCCTCCCAGGCAGTG 20 198

928 Forward TGACCCCTGCACCCACCACA 20 chr1:230,387,991–230,388,261 chr1 230,396,329 230,406,329

Reverse GCCGCAGCTGGAAAAGGGGT 20 271

1023 Forward GCGTTGCCCTTTGCCACCAC 20 chr10:4,017,971–4,018,253 chr10 4,008,411 4,018,411

Reverse GCTGCAGCCTCCACCTGCAA 20 283

1377 Forward AGCCCTGAAAGGTGAGCCCCA 21 chr10:90,168,738–90,168,918 chr10 90,159,026 90,169,026

Reverse GGGTGGGAGGGGGCTGCTAA 20 181

1494 Forward GCACGTTGCAGATGCACTGCG 21 chr10:114,445,426–114,445,576 chr10 114,440,981 114,450,981

Reverse TGGATGGGTCACGTGTGGCG 20 151

1496 Forward GTTGCTCACCACGGGAGGCC 20 chr10:114,788,086–114,788,296 chr10 114,782,400 114,792,400

Reverse CCACAAGCCAGCCGACGGAG 20 211

2658 Forward GGGTTTCCGGGCAGGTGGTG 20 chr12:114,297,381–114,297,554 chr12 114,296,629 114,306,629

Reverse AGCCCCGGCTTTCCTCCCTT 20 174

2659 Forward CCGCCTCTTCCCACCCCACT 20 chr12:114,463,910–114,464,159 chr12 114,463,748 114,473,748

Reverse GGCCTGGCAGGGGTTTTGCT 20 250

5418 Forward GTGGGGATTGACTGCACTGCCA 22 chr2:44,479,986–44,480,137 chr2 44,479,922 44,489,922

Reverse TCAATGCCCCCTCCCCCAACA 21 152

7316 Forward GTGCCCAGCGGCCAGTGTAG 20 chr3:109,192,760–109,192,989 chr3 109,187,624 109,197,624

Reverse CTGAGTGTGGCGCCTGTGGG 20 230

7317 Forward CGCCCTATCCCGGGACTGCT 20 chr3:109,390,861–109,391,033 chr3 109,380,748 109,390,748

Reverse CCTGTGTCTGCTTCCCCCACC 21 173

7515 Forward AAGGCCAGTTGCAGGCCCTG 20 chr3:153,125,829–153,126,087 chr3 153,111,466 153,121,466

Reverse CACCCCAACGGCGCATGGTT 20 259

7516 Reverse AGGCAGCACTGCGGTAATATGCT 23 chr3:153,356,058–153,356,339 chr3 153,355,644 153,365,644

Forward GGGCTGCAGTGGGTTCTGCC 20 282

7551 Reverse GTGGCAGCTACACGGCCAGG 20 chr3:161,085,915–161,086,106 chr3 161,084,943 161,094,943

Forward GGAAGCCCCAAACCCAGGCA 20 192

8679 Reverse TCTGTGCGGGCCTGAAGGGG 20 chr5:38,608,473–38,608,822 chr5 38,601,124 38,611,124

Forward AGCGGCCACATCTTGCAGGT 20 350

8680 Reverse GGCACCACGAGGGAGATGCG 20 chr5:38,794,843–38,795,022 chr5 38,786,446 38,796,446

Reverse CCCGGCAGTGGGAGAGACGA 20 180

8893 Forward CTGGCCCCTCCTCACCTCCG 20 chr5:95,884,467–95,884,676 chr5 95,902,422 95,912,422

Reverse GGCACACCAGGCAGCACCTC 20 210

9107 Forward ACACATTTGCTGAGGGCCCACT 22 chr5:142,903,434–142,903,692 chr5 142,899,586 142,909,586

Reverse ACTGTCCCATCCTGCGGCCT 20 259

doi:10.1371/journal.pcbi.1002225.t001
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Monte Carlo with simulated annealing [23,24], moves are

accepted when exp((dRbest2dR)/T).i, where dR is the distance

ratio of the proposed move, dRbest is the current best distance

ratio, T is a temperature parameter that decreases geometrically

during the simulation, and i is a random number from 0 to 1.

Cell type classification
Cell type classification was performed using absolute distances

between experiments measured from replication timing in

fingerprint regions, using the k-nearest neighbor rule with k = 3;

i.e., each profile was categorized according to the three nearest

profiles. Crossvalidation was performed to select an appropriate

value for k, with k = 3 chosen as the smallest value that yielded

100% classification accuracy after leave-one-out crossvalidation

(LOOCV) to allow classification of cell types with fewer replicates.

For LOOCV results, each experiment was sequentially left out

during Monte Carlo selection, and the resulting regions were used

to predict the identity of the excluded experiment. To test

prediction on cell types not yet encountered, all profiles for a given

cell type were left out during region selection (LCTO), and cell

type was predicted using the resulting regions. All data analysis

was performed using custom R scripts and Bioconductor packages

[43,44].

Cell type classification using PCR
For each fingerprint region depicted in Table 1, 10–20 kb from

the center of the region was sent to NCBI Primer-Blast (http://

www.ncbi.nlm.nih.gov/tools/primer-blast/) to design several PCR

primer sets with product sizes of 150–350 bp, using standard

parameters. Forward and reverse primer pairs displaying the

greatest specificity were chosen. Primer sets were verified for

specificity and product size using the In-Silico PCR tool at the

UCSC genome browser (http://genome.ucsc.edu/cgi-bin/hgPcr).

PCR reactions were set up using 1.25 ng genomic DNA and

1 uM each of forward and reverse primers in 12.5 uL scaled

according to the instructions of Crimson Taq DNA Polymerase

(NEB). Thirty six cycles of PCR (empirically determined to be

unsaturated for amplification) were performed according to

manufacturer’s conditions with annealing temperature of 62uC.

One-third of the reaction was analyzed on a 1.5% agarose gel

containing ethidium bromide. The gel was scanned by Typhoon

Trio (GE Healthcare) and band intensity was quantified by Image

Quant TL (GE Healthcare). After the background was subtracted,

signal intensity from the early S fraction was divided by the sum of

those from early S and late S fractions from each sample, as

described [35]. PCR timing values were converted to array RT

scale (equivalent root-mean-square) using the scale function in R,

and distances were calculated against other cell types as previously

performed.

Accession numbers
GSE18019, GSE20027

Supporting Information

Figure S1 Classification errors using whole genome
nearest neighbor approach. The above distances were

calculated between profiles as in Figure 2, using the entire genome

rather than an optimized set of fingerprinting regions. Classifica-

tion errors (shaded red) result when distances between cell types

are smaller than the distance within cell types. Here, TT2 ESC

replicate 1 could be misclassified as an NPC, or D3 NPC replicate

2 as an ESC.

(TIF)

Figure S2 The Monte Carlo optimization algorithm. A.

Regions used in replication fingerprints are selected using a two

step algorithm. First, 200 kb segments with significant changes in

replication timing between any two cell types are isolated. Next, a

random set of these segments are sampled to calculate a distance

ratio (Figure 1C) representing the starting separation between cell

types, and an iterative algorithm randomly selects between one of

three moves: 1) include an unused region in the fingerprint, 2)

remove a region from the fingerprint, or 3) swap regions between

fingerprint and unused lists. By the Metropolis-Hastings criterion,

moves that improve the separation between cell types (increase the

distance ratio criterion) are accepted with a higher probability

than those that do not. B. Maximization of the distance ratio (left)

as domain number (right) decreases to a predetermined minimum

(here, n = 20).

(TIF)

Figure S3 Genomewide correlations between mouse
timing datasets. Heatmaps depict the level of correlation

between timing datasets averaged in 200 kb windows, from low

(red) to high (white). Note the relatively high level of variation in

correlations between similar and divergent cell types (compare to

Figure S4).

(TIF)

Figure S4 Correlations between mouse timing datasets
in consensus cell-type fingerprint regions. Heatmaps

depict the level of correlation between timing datasets in 200 kb

fingerprint regions. from low (red) to high (white). Compare with

Figure S3.

(TIF)

Figure S5 Correlations between mouse timing datasets
in consensus pluripotency fingerprint regions. Heatmaps

depict the level of correlation between timing datasets in 200 kb

fingerprint regions, from low (red) to high (white).

(TIF)

Figure S6 Genomewide correlations between human
timing datasets. Heatmaps depict the level of correlation

between timing datasets averaged in 200 kb windows, from low

(red) to high (white). Note the relatively high level of variation in

correlations between similar and divergent cell types (compare to

Figure S7).

(TIF)

Figure S7 Correlations between human timing datasets
in consensus cell-type fingerprint regions. Heatmaps

depict the level of correlation between timing datasets in 200 kb

fingerprint regions, from low (red) to high (white).

(TIF)

Figure S8 Correlations between human timing datasets
in consensus pluripotency fingerprint regions. Heatmaps

depict the level of correlation between timing datasets in 200 kb

fingerprint regions, from low (red) to high (white).

(TIF)

Figure S9 Distance matrix for mouse cell type consen-
sus fingerprint. Numbers indicate the Euclidean distance

between replication profiles measured in the 18 regions included

in over 75% of runs of the fingerprinting algorithm. Cell type

definitions used for training are indicated by the color map in rows

and columns (see color key at top). Color scale for distances relates

the relative similarity of cell types in fingerprint regions, from

highly similar (red) to highly divergent (blue).

(TIF)
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Figure S10 Distance matrix for mouse pluripotency
consensus fingerprint. Numbers indicate the Euclidean

distance between replication profiles measured in the 18 regions

included in over 75% of runs of the fingerprinting algorithm. Cell

type definitions used for training are indicated by the color map in

rows and columns (light blue: pluripotent cell types; dark blue:

committed cell types). Color scale for numbers relates the relative

similarity of cell types in fingerprint regions, from highly similar

(red) to highly divergent (blue).

(TIF)

Figure S11 Distance matrix for human cell-type con-
sensus fingerprint. Numbers indicate the Euclidean distance

between replication profiles measured in the 18 regions included

in over 75% of runs of the fingerprinting algorithm. Cell type

definitions used for training are indicated by the color map in rows

and columns (see color key at top). Color scale for numbers relates

the relative similarity of cell types in fingerprint regions, from

highly similar (red) to highly divergent (blue).

(TIF)

Figure S12 Distance matrix for human pluripotency
consensus fingerprint. Numbers indicate the Euclidean

distance between replication profiles measured in the 18 regions

included in over 75% of runs of the fingerprinting algorithm. Cell

type definitions used for training are indicated by the color map in

rows and columns (light blue: pluripotent cell types; dark blue:

committed cell types). Color scale for numbers relates the relative

similarity of cell types in fingerprint regions, from highly similar

(red) to highly divergent (blue).

(TIF)

Figure S13 Calculation of consensus fingerprint re-
gions. Since the Monte Carlo algorithm will randomly include

or exclude regions in each run, the suitability of a set of regions for

classification can be evaluated by running the algorithm multiple

times and choosing the regions most often present. Regions with

particularly unique timing in each cell type are often selected in

100/100 trials; here, we select regions included in at least 75 out of

100 runs for ‘consensus’ fingerprints for mouse and human cell

type and pluripotency regions. The x-axis depicts the rank of each

region in percentage of runs with that region included.

(TIF)

Table S1 Summary of experimental datasets. References

and brief descriptions for each cell line and cell type analyzed.

(XLSX)

Table S2 Window size comparison. A summary of

algorithm performance using window sizes of 50 kb, 100 kb,

200 kb, and 400 kb. Windows of 200 kb were used for the

remaining analyses to correspond with the unit size of develop-

mental replication timing changes, which is typically 400–800 kb

[3–5].

(XLSX)

Table S3 Mouse pluripotency fingerprint regions. Ge-

nomic locations (from the mm8 build) and average replication

timing values for the top 200, 100, and 20 pluripotency fingerprint

regions for mouse cell types.

(XLSX)

Table S4 Mouse pluripotency fingerprint genes. Repli-

cation timing and transcription values for genes included in the top

200, 100, and 20 mouse pluripotency fingerprint regions. Genes in

common with the human pluripotency fingerprint are highlighted

in bold font. Timing values are assigned to transcription start loci

from loess smoothed profiles with a span of 300 kb.

(XLSX)

Table S5 Human pluripotency fingerprint regions.
Genomic locations (from build hg18) and average replication

timing values for the top 200, 100, and 20 pluripotency fingerprint

regions for human cell types.

(XLSX)

Table S6 Human pluripotency fingerprint genes. Repli-

cation timing and transcription values for genes included in the top

200, 100, and 20 human pluripotency fingerprint regions, with

genes in common with the mouse pluripotency fingerprint

highlighted in bold font.

(XLSX)

Table S7 Human and mouse HIST1 genes. Replication

timing and transcription values across genes in the major HIST1

cluster in human and mouse.

(XLSX)
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