Summary:
Our group studies the cell biological mechanisms underlying the switch of neuroepithelial (NE) cells from proliferation to neurogenesis in the mouse embryo (1,2). Prior to, during, and as a consequence of, neurogenesis, NE cells down-regulate a number of epithelial features (3,4). Expression of the anti-proliferative gene TIS21 can be used as a tool to distinguish between proliferating and neuron-generating NE cells (5). Time-lapse microscopy of neuron-generating divisions of NE cells using transgenic mouse embryos expressing GFP under the control of the TIS21 promoter reveals the existence of a novel neuronal progenitor dividing at the basal side of the neuroepithelium (6). We also investigate the role of cell cycle length in determining the onset of neurogenesis (7). To study the distribution, during mitosis, of cellular components in the context of the apico-basal axis of NE cells, we focus on prominin-1, a pentaspan membrane protein sorted to the apical surface of NE cells and specifically retained in plasma membrane protrusions (8-10). Prominin-1 is associated with a novel, cholesterol-based lipid raft which is involved in prominin’s retention in microvilli (9). Using prominin-1 to define the apical surface of NE cells, we investigate the symmetric vs. asymmetric distribution of the apical plasma membrane during proliferating vs. neuron-generating divisions of NE cells (11). Finally, we have developed a method to knock-down gene expression in NE cells using RNA interference in the developing mouse embryo (12).

Host : Fumio Matsuzaki <Cell Asymmetry, CDB>
E-mail: fumio@cdb.riken.jp Tel: 078-306-3216(ext.:1632)
RIKEN Center for developmental Biology http://www.cdb.riken.go.jp/