Roles of the Store-operated Ca2+ entry in T cell development and function

Summary

Store-operated Ca2+ entry via the Ca2+ release-activated calcium (CRAC) channel is the predominant mechanism of intracellular Ca2+ increase in stimulated immune cells. CRAC channels open after endoplasmic reticulum (ER) Ca2+ stores are depleted by inositol trisphosphate (IP3) binding to IP3 receptors. Sustained Ca2+ influx drives diverse functions of immune cells including T cell differentiation and cytokine expression. Recently, we and others used genome-wide RNAi screens in \textit{Drosophila} to identify two key molecules controlling CRAC channel activity, the ER Ca2+ sensor Stim and a pore subunit of the CRAC channel, Orai. We also found that cells from patients with hereditary severe combined immune deficiency syndrome have a single missense mutation in \textit{Orai1}. \textit{Drosophila} Stim and its mammalian homologues, Stim1 and Stim2, are single-pass transmembrane proteins thought to sense ER Ca2+ levels through Ca2+-binding EF hands located in the ER lumen. Stim1 is an established positive regulator of store-operated Ca2+ entry, but the function of Stim2 is controversial. To investigate the physiological roles of Stim1 and Stim2, we generated mice with conditional deletion of the \textit{Stim1} and \textit{Stim2} genes. We show that Stim1 is a predominant effector of store-operated Ca2+ entry in naïve T cells and mouse embryonic fibroblasts (MEFs), and its deficiency severely impairs T cell cytokine expression. In contrast, Stim2 has little effect on store-operated Ca2+ entry in naïve T cells, but contributes significantly to store-operated Ca2+ entry in MEFs and to cytokine expression by differentiated T cells, in part by sustaining the late phase of NFAT nuclear localisation. Thus Stim1 and Stim2 are both positive regulators of Ca2+-dependent cytokine expression in differentiated T cells; the more abundant Stim1 is essential for response initiation but modest amounts of Stim2 have a crucial role in bolstering the function of Stim1. We also discuss some \textit{in vivo} phenotypes of Stim1 and Stim2 double knockout mice.