

CDB SEMINAR

Attila Csikasz-Nagy

The Microsoft Research-University of Trento Centre for Computational and Systems Biology

Thursday, September 15, 2011 16:00~17:00 D2F Seminar Room (E206)

Dynamics of cell cycle transitions

Summary

DNA replication, mitosis and mitotic exit are critical transitions of the cell cycle which should occur only once per cycle. The importance of various positive feedback and feed-forward loops in the irreversibility of these transitions has been investigated recently. A picture arises, where the key cell cycle regulator Cdk is controlled by positive feedback loops and Cdk enforces its downstream targets through feed-forward regulation. I will show the dynamical features of such regulatory loops and discuss how these are used at cell cycle transitions. Furthermore I will discuss how transcriptional regulation of activators and inhibitors of cell cycle transitions can influence the robustness of the transitions.

References

Novak, B., Tyson, J. J., Gyorffy, B., and Csikasz-Nagy, A. Irreversible cell-cycle transitions are due to systems-level feedback, *Nat Cell Biol* 9 (7), 724-8 (2007)

Csikasz-Nagy A. Computational systems biology of the cell cycle. *Brief Bioinform* 10 (4), 424-34 (2009)

Csikasz-Nagy, A. et al., Cell cycle regulation by feed-forward loops coupling transcription and phosphorylation, *Mol Syst Biol* 5, 236 (2009)

Romanel, A., Cardelli, L., Jensen, L. J., and Csikasz-Nagy, A. Transcriptional regulation is a major controller of cell cycle transition dynamics, *under review* (2011).

Host: Hiroki R. Ueda Systems Biology, CDB hiro@cdb.riken.jp Tel:078-306-3191 (ext: 5617)

RIKEN CENTER for DEVELOPMENTAL BIOLOGY (CDB)