Modification of Cullin-1 by Ubiquitin-like Protein Nedd8 Enhances the Activity of SCFskp2 toward p27kip1

Mitsuru Morimoto, Tamotsu Nishida, Reiko Honda,1 and Hideyo Yasuda2
School of Life Science, Tokyo University of Pharmacy and Life Science, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan

Received March 17, 2000

The periodic expression of cell cycle proteins is important for the regulation of cell cycle progression. The amount of CDK inhibitor, p27kip1, one such protein, seems to be regulated by the ubiquitin-proteasome system. The ubiquitin ligase (E3) toward p27kip1 is thought to be SCFskp2. The activity of SCFskp2 was increased by the addition of Roc1 protein to the complex. Furthermore, the ubiquitination of p27kip1 seemed to be dependent on the phosphorylation of T187 of p27kip1 because the mutant T187A was not ubiquitinated at all in an in vitro ubiquitination system. Cullin-1, a component of SCF, is modified by ubiquitin-like protein Nedd8. The modification site of cullin-1 was shown to be K696 because the K696R mutant was not modified. When the effect of the Nedd8 modification on the SCFskp2 activity toward p27kip1 was investigated, the activity was markedly decreased by using the Nedd8-unmodified mutant cullin-1 (K696R), indicating that the modification may play an important role on the SCFskp2 activity toward p27kip1.

In mammals, cell-cycle progression is thought to be mainly regulated by the activity of CDK. When the cells enter G\textsubscript{0} phase, the amount of CDK inhibitor p27kip1 increases, which inhibits the activity of CDK4 or CDK6 (1). On the other hand, when the cells enter G\textsubscript{1} phase the amount of p27kip1 decreases to activate CDK4 or CDK6. Since the p27kip1 is degraded by the ubiquitin-proteasome system, the regulatory mechanism of its ubiquitination is important to clarify the regulation of cell-cycle progression (2–4). The ubiquitination of the protein is regulated by the phosphorylation of it. The phosphorylation of T187 of p27 is thought to be a prerequisite for the ubiquitination and is attributed to CyclinE/CDK2 complex (5–7). The SCFskp2, consisting of cullin-1, skp1, and skp2, seems to function as a ubiquitin ligase (E3) toward p27 (3, 4). The p27 binding protein Jab1/Mov34 may function to accelerate the degradation of p27 by carrying p27 into cytoplasm (8).

Nedd8, a homologue of ubiquitin, is a modifier of cullin family proteins, and this modification is catalyzed by APPBP1/Uba3 as E1 and Ubc12 as E2 (9, 10). Recently, the cullin-1 in SCFskp2 was found to be modified by Nedd8 (11, 12). Furthermore, cullin-2 in VBC (11, 13), another E3 complex, is modified by it. More recently, cullin-1 to cullin-5 have also been found to be modified by it (10).

The modified cullin-1 is found in centrosomes, and the ratio of the modified cullin-1 to total cullin-1 increases when the cullin-1 is expressed together with Roc1 in SF-9 cells in the baculovirus protein expression system (14). However, the role of this modification has not yet been clarified.

Here, we show that Nedd8 modification of cullin-1 enhances the ubiquitination of p27.

MATERIALS AND METHODS

Expression and mutation of the proteins. Cullin-1, skp1, skp2, Roc1, p27kip1, cyclinE, CDK2, APPBP1, and hUba3 were expressed in a baculovirus expression system using SF-9 cells according to the manufacturer’s protocol (Clontech). In some experiments, the SF-9 cells were co-infected with baculoviruses with inserts of various cDNAs. UbcH5, Ubc12, and Nedd8 were expressed in E. coli (BL21, LysS) by using the pET vector. Point mutation of p27 cDNA or Nedd8 cDNA was done by use of the PCR method as described previously (15).

In vitro ubiquitination assay. The SF-9 cells expressing cullin-1, skp1, and skp2 were lysed in 50 mM Tris-HCl (pH 7.4), 3 mM MgCl\textsubscript{2}, 1 mM phenylmethyl sulfonyl fluoride (PMSF), 0.1 M NaCl, and 0.1% NP-40, and the SCF complex (composed of these expressed proteins)
RESULTS AND DISCUSSION

Ubiquitination of p27 by SCF^{skp2} in the presence of Roc1 and Nedd8 modification. The Roc1 protein was found to be a binding protein of cullin family proteins and to activate the ubiquitination of iKBα by SCF_{β−TrCP} (17, 18). To know whether the Roc1 protein is also important in the activity of SCF^{skp2} toward p27, we carried out the ubiquitination assay in the presence or absence of Roc1 protein. As shown in Fig. 1, the ubiquitination of p27 increased markedly in the presence of Roc1. Cullin-1, a component of SCF^{skp2}, has been shown to be modified by Nedd8, a ubiquitin-like protein. So to determine whether the Nedd8 modification is important for the activity of SCF, we carried out the ubiquitination of p27 with or without the Nedd8 modification system, i.e., APPBP1/hUba3, hUba12, and Nedd8. The ubiquitination of p27 was markedly increased in the presence of this modification system. In contrast, the p27 (T187A) was not ubiquitinated at all with or without the Nedd8 modification system (Fig. 2). However, even without the Nedd8 modification system, some ubiquitination of p27 was apparent, perhaps due to modification of cullin-1 by Nedd8 in Sf-9 cells during its expression. To confirm the effect of Nedd8 modification of cullin-1 on ubiquitination of p27, we examined the effect of Nedd8 un-modified form of cullin-1 on the ubiquitination.

Effect of Nedd8 unmodified mutant cullin-1 on SCF^{skp2} activity. Recently, the mammalian cullin-2 was found to be modified at K689 by Nedd8 (13). When human cullin-1 was aligned with cullin-2, the Nedd8 modification site of cullin-2 corresponded to K696 in cullin-1, as shown in Fig. 3. Therefore, the K696 residue was modified to R696, and the Nedd8 modification of this mutant cullin-1 was tested. After the wild-type or mutant cullin-1 had been subjected to the Nedd8 modification system, the modification of it was

FIG. 1. Roc1 enhances ubiquitination of p27^{skp2} in vitro. SCF^{skp2}, consisting of cullin-1, skp1, and skp2, was mixed with Roc1, and the ubiquitination reaction toward p27 was carried out as described under Materials and Methods except that the reaction mixture also contained HeLa cell lysate (4 × 10^5 cells/ml). Lane 1, the reaction mixture without Roc1 and with SCF^{skp2}; lane 2, with Roc1 and without SCF^{skp2}; lane 3, with Roc1 and SCF^{skp2}.
checked. By Western blotting using anti-Nedd8 antibody, the modification of wild-type cullin-1 was detected, but that of the mutant cullin-1 was not (Fig. 4A). Also, when the GST-tagged Nedd8 was used in the modification system, the Nedd8 modified wild-type cullin-1 was detected, but the modified mutant cullin was not (Fig. 4B). The Nedd8-modified form of cullin-1 had a much larger molecular weight than the unmodified cullin-1 (lanes 2, 4, and 6 in Fig. 4B). After the Nedd8 modification reaction had been carried out in the presence of wild-type or mutant cullin-1, the ubiquitination of p27 under the two conditions was compared. Although the SCFskp2 containing Nedd8-modified cullin-1 catalyzed the multi-ubiquitinated chain formation of p27 (lane 2 in Fig. 5), the SCFskp2 containing mutant cullin-1 did not catalyze the multi-ubiquitinated chain formation of p27 (Fig. 5).

Here we showed that Nedd8 modification of cullin-1 enhanced the activity of SCFskp2 toward p27kip1. The in vitro ubiquitination assay in mammalian system showed that the modification is essential for the SCFskp2 activity, although the disruption of RUB1, the yeast Saccharomyces cerevisiae homologue of Nedd8 gene, showed that the gene was not essential (19). In the yeast system, the over-expression of Cdc53 or Hrt1, the yeast homologue of Roc1, may compensate for the defect of Rub1 modification.

Further, we showed that Roc1 also enhanced the activity, indicating that SCFskp2 may also use the Roc1/cullin-1 heterodimer as the catalytic site, as shown for SCF$^{b-TrCP}$. The modification may be necessary for the efficient assembly of SCF components, and/or be necessary for the catalytic activity of the Roc1/cullin-1
Thus, the Nedd8 modification of SCF is probably essential for its activity.

ACKNOWLEDGMENTS

We thank Dr. Hirofumi Tanaka for his help to express the proteins in Sf-9 cells. This work was supported in part by a Grant-in-Aid from the Ministry of Education, Science, Culture, and Sports in Japan.

REFERENCES